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Preface

Field-programmable gate arrays (FPGAs) were invented in 1984 by Ross Freeman.
Basically, it is a semiconductor consisting of programmable logic blocks that can be
used to reproduce simple functions up to a complex system on a chip (SoC). Themain
advantages of the FPGAs are: they can be reprogrammed, have low development and
acquisition costs, and their application is a good option if the product is not in high
numbers. That way, FPGAs are gaining the attention of researches for the develop-
ment of applications in a wide variety of fields, for example, medicine, communi-
cations, signal processing, avionics, space, finance, military, electronics, and other
areas that exploit their flexibility and capability of being reprogrammed/configured.

Configurability for engineering applications makes FPGA very crucial in initial
stages for any embedded project. Some analog circuits and any digital circuit can be
implemented using FPGA, so the possibilities are endless. However, applications
found on recent articles and books did not detail the realizations from the model to
the physical synthesis. That way, this book details engineering applications of
FPGAs from mathematical models descriptions to VHDL programming issues and
hardware implementation of applications involving chaos theory.

The reader can find insights on FPGA-based implementations for chaos gener-
ators, artificial neural networks (ANNs), random number generators (RNGs), and
master–slave synchronization of chaotic oscillators to implement a secure com-
munication system for image transmission. The plus of this book is focused on
providing VHDL programming guidelines and issues, along with co-simulation
examples with Active-HDL and Simulink. In addition, we list some challenges on
applying different kinds of numerical methods, problems on optimizing chaotic
systems, selection of an ANN topology, its training, improvements on designing
activation functions, data supply using serial communication with a computer,
generation of random number generators from chaos theory, realization of chaotic
secure communication systems, and other open problems for future research.
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In summary, this book details FPGA realizations for:

• Chaos generators, which are described from their mathematical models, are
characterized by their maximum Lyapunov exponent, and are implemented
using minimal FPGA resources.

• Artificial neural networks (ANNs), discussing some topologies, different
learning techniques, kinds of activation functions, and issues on choosing the
length of the digital words being processed. One ANN topology is applied to
chaotic time series prediction.

• Random number generators (RNGs), which are designed using different chaos
generators, in the continuous-time and discrete-time domains. The RNGs are
characterized by their maximum Lyapunov exponent and entropy, and are
evaluated through NIST tests.

• Optimized chaotic oscillators are synchronized in a master–slave topology that
is used to implement a secure communication system to process black and
white, and grayscale images.

Some chapters discuss computer arithmetic issues to minimize hardware
resources and to reduce errors, before synthesizing the FPGA realization. At the
end, the reader can infer open lines for future research not only in areas where chaos
generators, ANNs, random number generators, and secure communications are
required, but also to extend the presented material to other problems in engineering.
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Chapter 1
Introduction to Field-Programmable Gate
Arrays

1.1 FPGA Architectures

What is an FPGA? Field-programmable gate arrays (FPGAs) are a class of devices
classified or called as field-programmable logic (FPL).

FPGAs are programmable semiconductor devices that are based on a matrix of
configurable logic blocks (CLBs) connected through programmable interconnects
[1]. Contrary to application-specific integrated circuits (ASICs), which have a fixed
design based on the application and that cannot be modified, FPGAs can be recon-
figured to modify or improve the design according to the application requirements.

The FPGA is a device that is completely manufactured, but that remains design-
independent allowing flexibility in implementing designs. Each FPGA vendor
designs a reconfigurable architecture, for example based on CLBs, logic cells (LCs)
or logic elements (LEs), provided by Xilinx and Altera, respectively. Also the FPGAs
include hard blocks like random access memory (RAM) or digital signal processor
(DSP), which are commonly used devices, while their incorporation improves the
resource utilization and maximum frequency of operation.

Figure 1.1 shows a simplified structure of a FPGA provided by Xilinx. One can
see that in general three major types of elements are required [2] as follows:

• Logic blocks
• I/O blocks
• Programmable Interconnect

Today, depending on FPGA’s family, its architecture may include many additional
hardware components that are integrated directly into the FPGA fabric, such as
embedded multipliers or DSP blocks, RAM blocks, digital clock managers (DCMs),
phase-locked loops (PLLs), soft processors, and intellectual property (IP) cores.

© Springer International Publishing Switzerland 2016
E. Tlelo-Cuautle et al., Engineering Applications of FPGAs,
DOI 10.1007/978-3-319-34115-6_1
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Fig. 1.1 Simplified FPGA
Xilinx Spartan-3 block
structure

1.2 Blocks Description

1.2.1 Logic Blocks

Static memory is the most widely used method of configuring FPGAs. Logic blocks
are based on this method; Xilinx called their logic blocks as configurable logic block
(CLB) and Altera called adaptive logic module (ALM). To better understand how
the logic blocks are constituted, a general description of CLBs and ALMs is presented
below.

1.2.1.1 Xilinx CLB

Talking about Xilinx, CLBs constitute the main logic resource for implementing
synchronous and combinational circuits. Taking into account Xilinx Spartan-3 Fam-
ily, each CLB contains four slices (these slices are grouped in pairs, each pair is
organized as a column with an independent carry chain), an interconnect routing to
neighboring CLBs and a switch matrix to provide access to general routing resources
as shown by Fig. 1.2 [3].

All the slides into a CLB contain the following elements: two RAM-based func-
tion generators (also known as a lookup table (LUT), is the main resource for imple-
menting logic functions), two storage elements, wide-function multiplexers, two
independent carry logic (which runs vertically up only to support fast and efficient
implementations of math operations), and arithmetic gates as shown in Fig. 1.3 [3].
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Fig. 1.2 Slides of CLB ( c©2013 Xilinx)

Fig. 1.3 Spartan-3 low portion of a slide ( c©2013 Xilinx)
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1.2.1.2 Altera ALM

Altera’s adaptive logic module (ALM) technology consists of eight-input combina-
tional logic, two registers, and two adders as shown in Fig. 1.4 [4]. By using Altera’s
patented LUT technology the combinational logic can be divided between two adap-
tive LUTs (ALUTs) as shown in Fig. 1.5.

In addition to implementing two independent 4-input functions, the ALM can
for example, implement a full 6-input LUT or a 5-input and a 3-input function with
independent inputs. Because two registers and two adders are available, the ALM
has the flexibility to implement 2.5 logic elements (LEs) of a classic 4-input LUT
architecture, consisting of a 4-LUT, carry logic, and a register as shown in Fig. 1.6
for Cyclone III device family in normal mode operation [5].

Normal mode operation allows general logic applications and combinational func-
tions implementation. The Cyclone III LES can be configured in arithmetic mode,
which is ideal for implementing adders, counters, accumulators, and comparators.

Fig. 1.4 Altera’s adaptive logic module (ALM) block diagram ( c©2006 Altera)

Fig. 1.5 Two independent
4-input LUTs ( c©2006
Altera)
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Fig. 1.6 Cyclone III device family LEs ( c©2011 Altera)

The Quartus II Compiler automatically selects the operation mode during design
processing. For normal mode operation the Quartus II Compiler selects the carry-in
signal as one of the inputs to the LUT, while for arithmetic mode creates carry chain
logic runs vertically, which allows fast horizontal connections.

1.2.2 Lookup Tables (LUTs)

Look-Up Tables are a fundamental part in logic elements of both Xilinx’s CLB and
Altera’s ALM providers.

1.2.2.1 Xilinx LUTs

The LUT is a RAM-based function generator and is the main resource for imple-
menting logic functions. Furthermore, the LUTs in each slice pair can be configured
as distributed RAM or a 16-bit shift register.

Each of the two LUTs (F and G) in a slice has four logic inputs (A1–A4) and
a single output (D) (see Fig. 1.7). Any four-variable Boolean logic operator can
be implemented in one LUT. Functions with more inputs can be implemented by
cascading LUTs or by using the wide-function multiplexers. The output of the LUT
can connect to the wide multiplexer logic, the carry and arithmetic logic, or directly
to a CLB output or to the CLB storage element [6].
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Fig. 1.7 Xilinx LUTs
( c©2011 Xilinx)

1.2.2.2 Altera LUTs

An Altera LUT is typically built out of SRAM bits to hold the configuration memory
(CRAM) LUT-mask and a set of multiplexers to select the bit of CRAM that is to
drive the output. Figure 1.8 shows a 4-LUT, which consists of 16 bits of SRAM
and a 16:1 multiplexer implemented as a tree of 2:1 multiplexers. The 4-LUT can
implement any function of four inputs (A, B, C, D) by setting the appropriate value
in the LUT-mask [4].

Fig. 1.8 Altera LUTs
( c©2006 Altera)
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1.2.3 I/O Blocks

Generally I/O blocks contain registers and buffers, their interconnection depend on
the FPGA family. A general description for Xilinx and Altera I/O blocks is presented
below.

1.2.3.1 Xilinx I/O Blocks

Xilinx I/O Blocks have three main signal paths: the output path, input path, and 3-state
path. Each path has its own pair of storage elements that can act as either registers
or latches (see Fig. 1.9). I/O Blocks provides a programmable, unidirectional or
bidirectional interface between package pin and the FPGA’s internal logic, supporting
a wide variety of standard interfaces [6].

1.2.3.2 Altera I/O Elements

The Altera Cyclone IV I/O Elements contain a bidirectional I/O buffer and five
registers for registering input, output, output-enable signals, and complete embedded
bidirectional single-data rate transfer (see Fig. 1.10). I/O pins support various single-
ended and differential I/O standards [7].

1.3 Programming Environments

In this section a brief introduction to Vivado from Xilinx, Quartus II from Altera,
and Active-HDL is presented.

1.3.1 Vivado

Vivado is the software tool that Xilinx provides for simulation, register transfer level
(RTL) analysis, synthesis, implementation, programming and debug [8]. Figure 1.11
shows the first window of Vivado, the next options are presented as follows:

• Quick Start

– Create New Project
– Open Project
– Open Example Project

• Tasks
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Fig. 1.9 Xilinx I/O Blocks ( c©2011 Xilinx)

– Manage IP
– Open Hardware Manager
– Xilinx Td Store

• Information Center

– Documentation and Tutorials
– Quick Take Videos
– Release Notes Guide
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Fig. 1.10 Altera I/O blocks ( c©2013 Altera)

Fig. 1.11 Beginning Vivado ( c©2015 Vivado Xilinx)
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Fig. 1.12 Create new project ( c©2015 Vivado Xilinx)

If there are any recent projects they will be listed in Recent projects subwindow.
By clicking create new project link, the window shown in Fig. 1.12 appears, and a
wizard to create the new project is started. The instructions to create a new Vivado
project are given. To continue, click next.

Project Name window is shown in Fig. 1.13. Here the project name and project
location (where the project data files will be stored) must be given. Click next to
continue.

Project Type window is shown in Fig. 1.14. The next options are presented:

• RTL Project
• Post-synthesis Project
• I/O Planning Project
• Imported Project
• Example Project

RTL Project option allows to add sources, create block designs in IP Integra-
tor, generate IP, run RTL analysis, synthesis, implementation, design planning and
analysis. Click this option and then click next.

Add sources window is opened as shown by Fig. 1.15, here one can add files,
directories or create a new file. Verilog or very high speed integrated circuit HDL
(VHDL) files can be added, also simulation language is selected. Vivado supports
mixed description and simulation (Verilog and VHDL). Click next to continue.
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Fig. 1.13 Project name and location ( c©2015 Vivado Xilinx)

Fig. 1.14 Project type ( c©2015 Vivado Xilinx)
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Fig. 1.15 Add sources ( c©2015 Vivado Xilinx)

With all the sources included the next step is to include the IP files, if there.
Figure 1.16 shows the Add Existing IP window. This window is for specifying exist-
ing configurable IP, DSP composite, and Embedded sub-design files to add to the
project. If there are not, just click next.

Constraints files could be added using the Add Constraints window. Add Con-
straints window is shown in Fig. 1.17, here one can specify or create constraint files
for physical (pin assignment depending on the chip selected to implement the design)
and timing constraints (if it is necessary that a specific signal satisfies a maximum
time). As the previous window (Add existing IP), add constraints is optional, the files
can be added later. To continue, click next.

In Default Part window (see Fig. 1.18) choose a default Xilinx part or board for the
project. This can be changed later. In Fig. 1.18 the part selected is xc7a100tcsg324-1
that corresponds to Artix-7 family. Click next to continue.

Finally, the last window is a summary of the new project as shown by Fig. 1.19.
Here one can see the name of the created project, the files added, the IP and constraints
files added, and the selected default part and product family.

Figure 1.20 shows the project generated, in the left menu there are the next options
and tools to manage the project:

• Project Manager

– Project Settings
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Fig. 1.16 Add existing IP ( c©2015 Vivado Xilinx)

Fig. 1.17 Add constraints ( c©2015 Vivado Xilinx)
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Fig. 1.18 Default part ( c©2015 Vivado Xilinx)

Fig. 1.19 New project summary ( c©2015 Vivado Xilinx)
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Fig. 1.20 Project generated ( c©2015 Vivado Xilinx)

– Add Sources
– Language Templates
– IP Catalog

• IP Integrator

– Create Block Design
– Open Block Design
– Generate Block Design

• Simulation

– Simulation Settings
– Run Simulation

• RTL Analysis

– Elaboration Setting
– Open Elaborated Design

Report DRC
Report Noise
Schematic

• Synthesis

– Synthesis Setting
– Run Synthesis
– Open Synthesis Design

Constraints Wizard
Edit Timing Constraints
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Set Up Debug
Report Timing Summary
Report Clock Networks
Report Clock Iteration
Report DRC
Report Noise
Report Utilization
Report Power
Schematic

• Implementation

– Implementation Settings
– Run Implementation
– Open Implemented Design

Constraints Wizard
Edit Timing Constraints
Report Timing Summary
Report Clock Networks
Report Clock Iteration
Report DRC
Report Noise
Report Utilization
Report Power

• Program and Debug

– Bitstream Settings
– Generate Bitstream
– Open Hardware Manager

Open Target
Program Device
Add Configuration Memory Device

1.3.2 Quartus II

Quartus II is the software tool from Altera, Quartus II software is a complete
computer-aided design (CAD) system for designing digital circuits [9]. Figure 1.21
shows the first window when Quartus II is started. In the central window (Home)
there are the Start Designing and Recent Projects options. By clicking New Project
Wizard the user starts the design of a new project.

Figure 1.22 shows the New Project Wizard window, in which the user selects the
working directory for the project, gives a name to the project, and writes the name of
the top-level entity for the project (it is important to underline that the name is case
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Fig. 1.21 Beginning Quartus II ( c©2015 Quartus II Altera)

Fig. 1.22 Quartus II new project wizard ( c©2015 Quartus II Altera)
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sensitive and must exactly match the entity name in the design file). The option to
use existing project settings is also available. To continue click next.

In Project Type window (see Fig. 1.23) two options to create the project are shown.
On the one hand, Empty project option allows us to create a new project from the
beginning, specifying project files, target device and electronic design automation
(EDA) tool settings. On the other hand, Project template option creates a project
from an existing design template.

Figure 1.24 shows the Add Files window, in this window the user selects the design
files to be included into the project. If there are not files to be included just click next
to continue.

Family and Devices Settings window is shown in Fig. 1.25, here the user selects
the family device and device to target for compilation. Depending on the Quartus
II version there are some Family devices included, if necessary the user can install
additional device support with the InstallDevices command on the Tools menu. Click
next to continue.

Quartus II gives the option to specify other EDA tools to be used with Quartus
II to develop the project, this can be done in EDA Tool Setting window shown in
Fig. 1.26. If there is not any other EDA tool just click next to continue.

Fig. 1.23 Quartus II project type ( c©2015 Quartus II Altera)
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Fig. 1.24 Quartus II add files ( c©2015 Quartus II Altera)

In the last wizard window a summary of the new project created is shown (see
Fig. 1.27), if necessary the user can go back to change one or several selected options,
if not just click finish to generate the new project.

Finally, Fig. 1.28 shows the new project generated in Quartus II software, in the
left menu the user can apply the following options for compiling the design:

• Analysis and Synthesis

– Edit Settings
– View Report
– Analysis and Elaboration
– Partition Merge

View Report
State Machine Viewer
Technology Map Viewer (Post-Mapping)

– Netlist Viewer
RTL Viewer
Design Partition Planner

– Design Assistant (Post-Mapping)
View Report
Edit Settings
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Fig. 1.25 Quartus II family and devices settings ( c©2015 Quartus II Altera)

– I/O Assignment Analysis
View Report
Pin Planner

• Fitter (Place and Route)

– View Report
– Edit Settings
– Chip Planner
– Technology Map Viewer (Post-Fitting)
– Design Assistant (Post-Fitting)

View Report
Edit Settings

• Assembler (Generate programming files)

– View Report
– Edit Settings

• TimeQuest Timing Analysis

– View Report
– Edit Settings
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Fig. 1.26 Quartus II EDA tool settings ( c©2015 Quartus II Altera)

– TimeQuest Timing Analyzer

• EDA Netlist Writer

– View Report
– Edit Settings

• Program Device (Open Programer)

1.3.3 Aldec Active-HDL

Aldec Active-HDL is a windows based, integrated FPGA design creation and simu-
lation solution team-based environment [10]. It is an excellent tool for digital circuit
simulation described in VHDL and Verilog. Figure 1.29 shows the Active-HDL win-
dow at the beginning. Getting Started window is displayed. Here one can select recent
projects or create a new one. To continue select create a new workspace.

A wizard is started to create the new workspace. In the firs window the name of
the new workspace must be given, see Fig. 1.30. In this example the name given is
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Fig. 1.27 Quartus II summary ( c©2015 Quartus II Altera)

Fig. 1.28 Quartus II ( c©2015 Quartus II Altera)
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Fig. 1.29 Active-HDL ( c©Aldec)

Fig. 1.30 New workspace window ( c©Aldec)

project_1 and the location folder is c:\my_desings\. Also the Add New Design to
Workspace option is checked. Click Ok to continue.

New Design Wizard window is shown in Fig. 1.31, where four options are pre-
sented to select the best option for the design. Then click continue. The options
are:
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Fig. 1.31 New Design Wizard window ( c©Aldec)

• Create an Empty Design
• Create an Empty Design with Design Flow
• Add existing Resource Files
• Import a Design from Active-CAD

The next window is the Property page (see Fig. 1.32), here some additional infor-
mation about the new design can be specified as a design language (block diagram
configuration and default HDL language) and Target Technology (Vendor and Tech-
nology). To continue click next.

Into the workspace one or more designs can be declared. Figure 1.33 shows the
New Design Name window where the name of the design is given. Also the location of
the design folder is given, by default the location is the same of the workspace folder.
To better understand the difference of workspace and design imagine a workspace
named digital systems, then two designs are declared into the workspace: combi-
national and sequential. At the same time, each design can have several files for
example taking into account the combinational design some files are multiplexors,
adders, multipliers, etc.
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Fig. 1.32 Property page window ( c©Aldec)

In the last window of the wizard a summary of the new design is presented. This
window is shown in Fig. 1.34. Click next to continue.

Finally, Fig. 1.35 shows the Active-HDL window with the new generated project.
It can be seen the design browser subwindow, in which in a tree mode are presented
the workspace, the design and the files included into the design. New Files can be
added from here.

Figure 1.36 shows an Active-HDL circuit simulation, for this example the AND
gate is simulated, the inputs are A (blue signal) and B (green signal), the output is
C (red signal). Through the signal stimulation in time the respond of the gate can be
tested. A cursor allows to check the value of the inputs and the output in a specific
time, in the figure the cursor is around 392 ns, at this moment the signal value are A
= 1, B = 1 and C = 1.
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Fig. 1.33 New Design Name window ( c©Aldec)

1.4 Computer Arithmetic

Our positional numerical system multiplies by powers of 10, starting in 0, each
decimal digit to the left of decimal point; and divides by the same powers (1/10m =
10−m) but now starting at 1, the decimal digits to the right of the decimal point.
For example, the number 341.12, the three digits to the left of decimal point mean
3 ∗ 100 + 4 ∗ 10 + 1 ∗ 1 (1 is equal to 100); the three digits if the right mean
1 ∗ 10−1 + 2 ∗ 10−2. The entire number is the sum of both parts.

In the same form works the binary numerical system, but only two digits are
available (binary digits, bits, 0 or 1) and the powers use the base 2, instead the base
10 of our decimal system.

The number 1010 means 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 8 + 0 + 2 + 0 = 10d .
Now we want to represent positive and negative numbers. Using three bits we can

represent the decimal number 0–7, as it is shown in Table 1.1 on the first column.
We could attach a digit in front of the number: ‘0’ to present positive numbers,

and a ‘1’ to represent the negatives. This representation is called signed magnitude,
and it is shown in Table 1.1 on column 2. There exist other two possibilities to repre-
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Fig. 1.34 New design wizard summary ( c©Aldec)

Fig. 1.35 New design wizard summary ( c©Aldec)
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Fig. 1.36 Active-HDL circuit simulation ( c©Aldec)

Table 1.1 Binary numbers with three digits (on the first column), and three different forms to
represent signed number of three digits: Use an extra bit for the sign (sign-magnitude representation),
one’s complement (1’C), and two’s complement (2’C)

Binary Decimal Sign-magnitude 1’C 2’C

000 0 0000 +0 0000 +0 0000 0

001 1 0001 +1 0001 +1 0001 +1

010 2 0010 +2 0010 +2 0010 +2

011 3 0011 +3 0011 +3 0011 +3

100 4 0100 +4 0100 +4 0100 +4

101 5 0101 +5 0101 +5 0101 +5

110 6 0110 +6 0110 +6 0110 +6

111 7 0111 +7 0111 +7 0111 +7

1000 −0 1000 −7 1000 −8

1001 −1 1001 −6 1001 −7

1010 −2 1010 −5 1010 −6

1011 −3 1011 −4 1011 −5

1100 −4 1100 −3 1100 −4

1101 −5 1101 −2 1101 −3

1110 −6 1110 −1 1110 −2

1111 −7 1111 −0 1111 −1

sent negative numbers: one’s complement (1’C), and two’s complement (2’C). Both
representations affect only the representation of negative numbers (see Table 1.1).
For example, for number 1001, in order to change it to 1’C, it is necessary to negate,
or invert, all its bits: 0110, which is −6d . In 2’C representation, the same number is
inverted and then added with 1, then 1001 will be 0110 + 1 = 0111 = −7d . Note in
Table 1.1 that for all negative numbers, invariantly they always start with a 1.

The problem with the signed magnitude and 1’C representations can be seen in
Table 1.1: there are two zeros (+0 and −0), a characteristic that can complicate the
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comparison by zero operations (it is necessary to perform two comparisons instead
of a single one). 2’C representation have only one zero. In the rest of this section the
2’C representation will be used.

1.4.1 Fixed Point Numbers

A binary number A(a, b) usesa bits to represent its integer part, andb bits to represent
its fractional part, then the number will require a + b + 1 bits in total (a bit is added
because of the sign).

For a binary number x ∈ A(a, b), the range of numbers that can be presented:

− 2a ≤ x ≤ 2a − 2−b (1.1)

Example: for a number A(3, 0), 3 bits are required to represent the integer part
(plus a bit for the sign), and without a fractional part. The range of numbers that can
be represented is: [−8, 7].

The range that can be represented for number A(2, 1) is [−4, 4 − 1/2], which is
also equal to [−4, 3.5].

Table 1.2 With 4 bits it can be represented numbers A(3, 0), A(2, 1), A(1, 2), or A(0, 3)

2’C A(3, 0) A(2, 1) A(1, 2) A(0, 3)

0000 0 0.0 0.00 0.000

0001 1 0.5 0.25 0.125

0010 2 1.0 0.50 0.250

0011 3 1.5 0.75 0.375

0100 4 2.0 1.00 0.500

0101 5 2.5 1.25 0.625

0110 6 3.0 1.50 0.750

0111 7 3.5 1.75 0.875

1000 −8 −4.0 −2.00 −1.000

1001 −7 −3.5 −1.75 −0.875

1010 −6 −3.0 −1.50 −0.750

1011 −5 −2.5 −1.25 −0.625

1100 −4 −2.0 −1.00 −0.500

1101 −3 −1.5 −0.75 −0.375

1110 −2 −1.0 −0.50 −0.250

1111 −1 −0.5 −0.25 −0.125

This table shows that binary numbers are the same, it just changes the interpretation of the same
binary number
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As can be seen in Table 1.2, with three bits (plus a bit for the sign), one can
represent the numbers A(3, 0), A(2, 1), A(1, 2) or A(0, 3). The binary number does
not change, or in other words, the binary point only change the form of interpreting
the number.

1.4.2 Operations with 2’ Complement Numbers

We are going to add two numbers A(a, b), these two numbers have the range
[−2a, 2a − 2−b]. The greatest number that is possible to obtain is by adding two
extremes: the two more positive or the two more negative. Adding the two most
negative one gives

−2a + (−2a) = 2(−2a) = −2a+1.

Adding the two more positive:

(2a − 2−b) + (2a − 2−b) = 2(2a − 2−b) = 2a+1 − 21−b

and | − 2a+1| > |2a+1 − 21−b|. Then one needs to represent the greatest negative
number −2a+1.

Therefore, adding two numbers A(a, b) results in a number A(a+1, b). Example:
for the number in Table 1.1, using numbers A(3, 0), the greatest number is generated
summing −8 − 8 = −16. This result needs number A(4, 0), which have range
[−16, 15].

For multiplication of two numbers 2’C in A(a, b), we are going to analyze how
many bits we need to store the result. The biggest numbers that will be generated are
the most positive result generated by multiplying both negative extremes; and the
most negative one by multiplying the most positive by the most negative. Then, for
the two more negatives:

(−2a)(−2a) = 22a (remember, it is positive!),

and the most negative by the most positive:

(−2a)(2a − 2−b) = −22a + 2a−b,

and the multiplication of two more positives is:

(2a − 2−b)2 = 22a − 2−2b

The biggest positive number that is necessary to represent is 22a . It is necessary to
represent also −2−2b, then we need a number A(2a+1, 2b) in order to represent the
multiplication of two numbers A(a, b). A(2a+1, 2b) has the range [−22a+1, 22a+1−
22b].
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Fig. 1.37 Cases of
multiplying two numbers, in
a two positives, b a positive
and a negative one,
and in c two negatives
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(a) (b) (c)(4)(5) (−5)(4) (−5)(−5)

Example: multiplying two numbers A(3, 0) results in:

(−8)(−8) = 64 (positive!)

(−8)(7) = −56

(7)(7) = 49

and it is required 7 bits (26 = 64 plus the sign bit). A number x ∈ A(6, 0) can
represent numbers −64 ≤ x ≤ 63. With a number y ∈ A(7, 0), one can represent
numbers in the range −128 ≤ y ≤ 127.

The most positive is an extreme. We could manage this extreme case as an over-
flow, and to leave result of multiplying to numbers A(a, b) in A(2a, 2b).

There is no problem in the multiplication of two positive numbers (see Fig. 1.37).
If a negative number is involved, then it is necessary to extend the sign bit to the
length of the result (A(2a + 1, 2b)) and perform the normal procedure, as can be
seen in Fig. 1.37.

1.4.3 Floating-Point Numbers

Floating-point numbers are defined in the standard IEEE-754 [11], the most common
formats are for 32 and 64 bits. A standard floating-point word consists of a sign bit
s, exponent e, and an unsigned normalized mantissa m as arranged as follows:

s Exponent e Unsigned mantissa m

Its algebraic representation is:

x = (−1)s × 1.m × 2e−b, (1.2)
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where b is de bias. This number bias is set based on the number of bits to represent
the exponent. If the exponent has k bits then the bias is:

b = 2k−1 − 1 (1.3)

It is preferred to use fixed point operations instead of floating-point ones on
FPGAs, because the fixed point notation has higher speed and lower cost, while
floating-point notation has higher dynamic range that is quite useful in complicated
algorithms [12].



Chapter 2
VHDL

2.1 A Brief History of VHDL

VHDL is the acronym of Very High-Speed Integrated Circuit Hardware Description
Language, and it was developed around 1980 at the request of the U.S. Department
of Defense. At the beginning, the main goal of VHDL was the electric circuit simu-
lation; however, tools for synthesis and implementation in hardware based on VHDL
behavior or structure description files were developed later. With the increasing use
of VHDL, the need for standardized was generated. In 1986, the Institute of Elec-
trical and Electronics Engineers (IEEE) standardized the first hardware description
language, VHDL, through the 1076 and 1164 standards. VHDL is technology/vendor
independent, then VHDL codes are portable and reusable.

2.2 VHDL Structure

VHDL is a structured language. Each description of a file has three main blocks:

• Libraries
• Entity
• Architecture

Listing 2.1 shows themain standard libraries for logic and arithmetic descriptions.
“Unsigned” and “arith” libraries were developed by Synopsys Inc., they may be
under c©.

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3 use IEEE. std_logic_unsigned . al l ;
4 use IEEE. std_logic_arith . a l l ;
5 use IEEE.numeric_std . a l l ;

Listing 2.1 Libraries

© Springer International Publishing Switzerland 2016
E. Tlelo-Cuautle et al., Engineering Applications of FPGAs,
DOI 10.1007/978-3-319-34115-6_2
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Fig. 2.1 Black box

Entity can be seen as a black box as shown by Fig. 2.1, where the inputs and
outputs must be defined here (see listing 2.2). For example, Fig. 2.1 has four ports:
signal A is type in, signal B is type out, signal C is type in/out, and signal D is type
buffer.

• in. Input signal to the entity. Unidirectional
• out. Output signal to the entity. Unidirectional
• in/out. Input–output signal to the entity. Bidirectional
• buffer. Allows internal feedbacks inside the entity. The declared port behavior is
as an output.

The data type for each port must be defined. Some of the most used in VHDL are:

• Bit. The only values that port allows are 0 or 1.
• Boolean. Take the values true or false.
• Integer. This type cover all integer values.
• std_logic. This data type allows nine values

– U Unitialized
– X Unknown
– 0 Low
– 1 High
– Z High impedance
– W Weak unknown
– L Weak low
– H Weak high
– ’-’ Don’t care

• bit_vector. A vector of bits.
• std_logic_vector. A vector of bits of type std_logic.

1 entity name_of_entity is
2 port (
3 port_name: port_mode signal_type ;
4 port_name: port_mode signal_type ;
5 . . . . .
6 ) ;
7 end [ entity ] [name_of_entity ] ;

Listing 2.2 Entity declaration
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Listing 2.3 shows the entity description for the black box of Fig. 2.1.

1 entity black_bok is
2 port (
3 A : in std_logic_vector(1 downto 0) ;
4 B : out std_logic ;
5 C : inout std_logic ;
6 D : buffer std_logic
7 ) ;
8 end black_box;

Listing 2.3 Entity black box

Architecture contains a description of how the circuit should function, fromwhich
the actual circuit is inferred. A syntax for an architecture description is shown in
listing 2.4.

1 architecture architecture_name of entity_name is
2 [ architecture_declarative_part ]
3 begin
4 architecture_statements_part
5 end [ architecture ] [architecture_name ] ;

Listing 2.4 Architecture syntax

Listing 2.5 shows an example of an architecture description for an AND gate.
A complete description of the AND gate including libraries and entity is shown in
listing 2.6. You may check the next related books [13, 14, 15, 16].

1 architecture example of AND_G is
2 begin
3 C <= AANDB;
4 −− This is a comment
5 −− C is an output
6 −− A, B are inputs
7 end architecture example;

Listing 2.5 Architecture of AND gate

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity AND_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end AND_G;
11

12 architecture example of AND_G is
13 begin
14 C <= AANDB;
15 end architecture example;

Listing 2.6 AND gate description
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2.3 Levels of Abstraction

VHDL allows different styles for architecture description, they can be classified as:

• Behavioral description
• Structural description
• Data flow description

2.3.1 Behavioral Description

Behavioral description reflects the system function, how the system works without
taking care about the elements that compose it. It is just a relation between inputs and
outputs. A process structure is present in a combinational description. For example,
listing 2.7 shows a behavioral description for a XOR gate. For this example it is
considered that (Fig. 2.2 and Table2.1):

if A = B then C = 0

if A �= B then C = 1

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity XOR_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end XOR_G;
11

12 architecture behavioral of XOR_G is
13 begin
14 process(A,B)
15 begin
16 i f A = B then
17 C <= ’0 ’;
18 else
19 C <= ’1 ’;
20 end i f ;
21 end process ;
22 end architecture behavioral ;

Listing 2.7 XOR gate behavioral description

Another example is shown in listing 2.8. It shows the behavioral description for
the AND gate considering that (Fig. 2.3 and Table2.2):
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Fig. 2.2 RTL XOR

Table 2.1 XOR true table A B C

0 0 0

0 1 1

1 0 1

1 1 0

if A = 1 and B = 1 then C = 1

other case C = 0

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity AND_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end AND_G;
11

12 architecture behavioral of AND_G is
13 begin
14 process(A,B)
15 begin
16 i f A = ’1’ and B = ’1’ then
17 C <= ’1 ’;
18 else
19 C <= ’0 ’;
20 end i f ;
21 end process ;
22 end architecture behavioral ;

Listing 2.8 AND gate behavioral description

Fig. 2.3 RTL AND
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Table 2.2 AND true table A B C

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.3 2-bit comparator
true table

A B G E L

00 00 0 1 0

00 01 0 0 1

00 10 0 0 1

00 11 0 0 1

01 00 1 0 0

01 01 0 1 0

01 10 0 0 1

01 11 0 0 1

10 00 1 0 0

10 01 1 0 0

10 10 0 1 0

10 11 0 0 1

11 00 1 0 0

11 01 1 0 0

11 10 1 0 0

11 11 0 1 0

Fig. 2.4 2-bit comparator

Listing 2.9 shows the behavioral description of a 2-bit comparator (Table2.3).
Figure2.4 shows the inputs and outputs of the 2-bit comparator. For the behavioral
description it is considered that:

if A = 1 and B = 1 then C = 1

other case C = 0
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1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity comparator_2bits is
5 port (
6 A : in std_logic_vector(1 downto 0) ;
7 B : in std_logic_vector(1 downto 0) ;
8 G : out std_logic ;
9 E : out std_logic ;

10 L : out std_logic
11 ) ;
12 end comparator_2bits ;
13

14 architecture behavioral of comparator_2bits is
15 begin
16 combinational : process(A,B)
17 begin
18 i f A > B then
19 G <= ’1’;
20 else
21 G <= ’0 ’;
22 end i f ;
23

24 i f A = B then
25 E <= ’1’
26 else
27 E <= ’0 ’;
28 end i f ;
29

30 i f A < B then
31 L <= ’1 ’;
32 else
33 L <= ’0 ’;
34 end i f ;
35 end process combinational ;
36

37 end architecture behavioral ;

Listing 2.9 2-bit comparator behavioral description

2.3.2 Data Flow Description

Data flow description designates the way how data can be transferred from one
signal to another without using sequential statements. The data flow descriptions are
concurrent; these kinds of descriptions allow to define the flow that data take from
one module to another. An example of data flow description is shown in listing 2.10
(Table2.4, Fig. 2.5):

if A = 1 and B = 1then C = 0
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Table 2.4 NAND true table A B C

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 2.5 RTL NAND

Table 2.5 OR true table A B C

0 0 0

0 1 1

1 0 1

1 1 1

other case C = 1

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity NAND_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end NAND_G;
11

12 architecture Data_flow of NAND_G is
13 begin
14

15 C <= ’0’ when (A = ’1’ and B = ’1’) else ’1 ’;
16

17 end architecture Data_flow;

Listing 2.10 NAND gate data flow description

Another example of data flow description is shown in listing 2.11. In this case,
the data flow description for the OR gate considers that (Table2.5, Fig. 2.6):

if A = 0 and B = 0 then C = 0

other case C = 1
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Fig. 2.6 RTL OR

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity OR_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end OR_G;
11

12 architecture Data_flow of OR_G is
13 begin
14

15 C <= ’0’ when (A = ’0’ and B = ’0’) else ’1 ’;
16

17 end architecture Data_flow;

Listing 2.11 OR gate data flow description

Listing 2.9 shows the data flow description of a 2-bit comparator. Figure2.4 shows
the inputs and output of the 2-bit comparator and Table 2.3 its True Table.

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity comparator_2bits is
5 port (
6 A : in std_logic_vector(1 downto 0) ;
7 B : in std_logic_vector(1 downto 0) ;
8 G : out std_logic ;
9 E : out std_logic ;
10 L : out std_logic
11 ) ;
12 end comparator_2bits ;
13

14 architecture data_flow of comparator_2bits is
15 begin
16

17 G <= ’1’ when A > B else ’0 ’;
18 E <= ’1’ when A = B else ’0 ’;
19 L <= ’1’ when A < B else ’0 ’;
20

21 end architecture data_flow;

Listing 2.12 2-bit comparator data flow description
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Fig. 2.7 RTL EXAMPLE

2.3.3 Structural Description

Structural description is based on established logic models (gates, adders, counters,
etc.), which are called as components and they are interconnected in a netlist. Struc-
tural description has a hierarchy, it is necessary to reduce the design in small modules
(components). These components will be called into another module of more hier-
archy. This reduction allows a practical analysis of small modules and it is a simple
form to describe.

Figure2.7 shows an example of structural description, in this example are used
the AND, OR, XOR gates described above. Entity “example” is the top level design.
Listing 2.13 shows the structural description for the example.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity example is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : in std_logic ;
9 D : in std_logic ;
10 F : out std_logic
11 ) ;
12 end example;
13

14 architecture structural of example is
15 component AND_G
16 port (
17 A : in std_logic ;
18 B : in std_logic ;
19 C : out std_logic
20 ) ;
21 end component;
22 component OR_G
23 port (
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24 A : in std_logic ;
25 B : in std_logic ;
26 C : out std_logic
27 ) ;
28 end component;
29 component XOR_G
30 port (
31 A : in std_logic ;
32 B : in std_logic ;
33 C : out std_logic
34 ) ;
35 end component;
36

37 signal SI0 , SI1 , SI2 , SI3 , SI4 : std_logic ;
38

39 begin
40 DUT1 : AND_G port map(A,B,SI0) ;
41 DUT2 : XOR_G port map(SI0 ,SI1 ,F) ;
42 DUT3 : OR_G port map(C,D,SI1) ;
43

44 end structural ;

Listing 2.13 Structural Description Example

Listing 2.14 is the structural description of the 2-bit comparator, its RTL was
divided into three sections. The first one corresponds to G signal, when A is greater
than B, the RTL is shown in Fig. 2.8. The second one shows the RTL for E signal,
when A is equal to B, in this case Fig. 2.9 shows its RTL. Finally, the RTL for signal
L is shown in Fig. 2.10, when A is lower that B. This example for the structural
description of a 2-bit comparator, shows different levels of abstraction, beginning
with gates, their interconnections into amore complex gates (for example theOR4_G
is an OR with four inputs), the description of a logic function (G, E, L) and finally a
combinational circuit (comparator).

Fig. 2.8 RTL signal G
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Fig. 2.9 RTL signal E

Fig. 2.10 RTL signal L

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity comparator_2bits is
5 port (
6 A : in std_logic_vector(1 downto 0 ) ;
7 B : in std_logic_vector(1 downto 0 ) ;
8 G : out std_logic ; −− A > B
9 E : out std_logic ; −− A = B

10 L : out std_logic −− L < B
11 ) ;
12 end comparator_2bits ;
13

14 architecture structural of comparator_2bits is
15

16 component AND_G
17 port (
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18 A : in std_logic ;
19 B : in std_logic ;
20 C : out std_logic
21 ) ;
22 end component;
23

24 component OR3_G
25 port (
26 A : in std_logic ;
27 B : in std_logic ;
28 C : in std_logic ;
29 D : out std_logic
30 ) ;
31 end component;
32

33 component AND4_G
34 port (
35 A : in std_logic ;
36 B : in std_logic ;
37 C : in std_logic ;
38 D : in std_logic ;
39 E : out std_logic
40 ) ;
41 end component;
42

43 component AND3_G
44 port (
45 A : in std_logic ;
46 B : in std_logic ;
47 C : in std_logic ;
48 D : out std_logic
49 ) ;
50 end component;
51

52 component OR4_G
53 port (
54 A : in std_logic ;
55 B : in std_logic ;
56 C : in std_logic ;
57 D : in std_logic ;
58 E : out std_logic
59 ) ;
60 end component;
61

62 signal A1n,A0n, B0n,B1n : std_logic ;
63 signal S1,S2,S3,S4,S5,S6,S7,S8,S9,S10 : std_logic ;
64

65 begin
66 B0n <= not B(0) ;
67 B1n <= not B(1) ;
68 A0n <= not A(0) ;
69 A1n <= not A(1) ;
70
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71 −−−−−−G−−−−−−−−−−
72 DUT1: AND_G port map(A(1) ,B1n,S1) ;
73 DUT2: AND3_G port map(A(0) ,B1n,B0n,S2) ;
74 DUT3: AND3_G port map(A(1) ,A(0) ,B0n,S3) ;
75 DUT4: OR3_G port map(S1,S2,S3,G) ;
76

77 −−−−−− E−−−−−−−−−−−
78 DUT5: AND4_G port map(A1n,A0n,B1n,B0n,S4) ;
79 DUT6: AND4_G port map(A1n,A(0) ,B1n,B(0) ,S5) ;
80 DUT7: AND4_G port map(A(1) ,A(0) ,B(1) ,B(0) ,S6) ;
81 DUT8: AND4_G port map(A(1) ,A0n,B(1) ,B0n,S7) ;
82 DUT9: OR4_G port map(S4,S5,S6,S7,E) ;
83

84 −−−−−− L−−−−−−−−−−−−
85 DUT10: AND_G port map(A1n,B(1) ,S8) ;
86 DUT11: AND3_G port map(A1n,A0n,B(0) ,S9) ;
87 DUT12: AND3_G port map(A0n,B(1) ,B(0) ,S10) ;
88 DUT13: OR3_G port map(S8,S9,S10,L) ;
89

90 end structural ;

Listing 2.14 2-bit Comparator structural description

2.4 Modules Description Examples

In this section, a descriptions and simulation of some common circuits are given. For
example, the blocks: multiplexor, adder, decoder, flip_flop, registers, and counters.

2.4.1 Combinational Circuits

Some gates were described above, so the first example is a simple multiplexer 2 to 1.
Mux2_1 RTL is shown in Fig. 2.11 and its description in listing 2.15. Its simulation
usign Active-HDL is presented in Fig. 2.12

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity mux2_1 is
5 port (
6 I0 : in std_logic ;
7 I1 : in std_logic ;
8 S : in std_logic ;
9 Y : out std_logic
10 ) ;
11 end mux2_1;
12

13 architecture data_flow of mux2_1 is
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Fig. 2.11 Mux2_1

Fig. 2.12 Simulation of Mux2_1

14 begin
15 Y <= I0 when S = ’0’ else I1 ;
16 end data_flow;

Listing 2.15 Mux2_1 description

Figure2.13 presents a multiplexor 4 to 1, but in this case each input is a vector of
“n-bit” except the input S which has 2-bit width and it does not depend on the generic
n. To declare n the keyword generic is used as is shown in listing 2.16, in line 5. n is
the integer type and its default value is four. By using the generic keyword, the value
of the vector width can be modified when the multiplexer is used as a component.
The description used the with/select structure, for the last case (“11”) the keyword
others is applied, others included all the combination described for std_logic signals
(see Sect. 2.2). The simulation of the mux4_1_n is shown in Fig. 2.14.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3

4 entity mux4_1_n is
5 generic(n : integer := 4);
6 Port ( I0 : in STD_LOGIC_VECTOR (n−1 downto 0);
7 I1 : in STD_LOGIC_VECTOR (n−1 downto 0);
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Fig. 2.13 Mux4_1_n

Fig. 2.14 Simulation of Mux4_1_n

8 I2 : in STD_LOGIC_VECTOR (n−1 downto 0);
9 I3 : in STD_LOGIC_VECTOR (n−1 downto 0);

10 S : in STD_LOGIC_VECTOR (1 downto 0);
11 Y : out STD_LOGIC_VECTOR (n−1 downto 0)
12 );
13 end mux4_1_n;
14

15 architecture data_flow of mux4_1_n is
16

17 begin
18 with S select
19 Y <= I0 when "00",
20 I1 when "01",
21 I2 when "10",
22 I3 when others;
23

24 end data_flow;

Listing 2.16 Mux4_1_n description

An example of hexadecimal to 7 segments decoder is shown below. Figure2.15
shows one input vector of 4 bits and one output vector of 7 bits, for this example
the description is behavioral. Simulation for hexadecimal to 7 segments decoder is
presented in Fig. 2.16. Please check that segment “a” corresponds to bit seg(7), “b”
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Fig. 2.15 Hexadecimal to 7 segments decoder

Fig. 2.16 Simulation hexadecimal to 7 segments decoder

to seg(6), “c” to seg(5), “d” to seg(4), “e” to seg(3), “f” to seg(2), and “g” to seg(1),
for this description the signal seg does not have a bit seg(0) declared.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity hex_7seg is
5 port (
6 hex : in std_logic_vector(3 downto 0) ;
7 seg : out std_logic_vector(7 downto 1)
8 ) ;
9 end hex_7seg;
10

11 architecture behavioral of hex_7seg is
12 begin
13 process(hex)
14 begin
15 case hex is −− abcdefg
16 when x"0" => Seg <= "1111110" ;
17 when x"1" => Seg <= "0110000" ;
18 when x"2" => Seg <= "1101101" ;
19 when x"3" => Seg <= "1111001" ;
20 when x"4" => Seg <= "0110011" ;
21 when x"5" => Seg <= "1011011" ;
22 when x"6" => Seg <= "1011111" ;
23 when x"7" => Seg <= "1110000" ;
24 when x"8" => Seg <= "1111111" ;
25 when x"9" => Seg <= "1111011" ;
26 when x"A" => Seg <= "1110111" ;
27 when x"b" => Seg <= "0011111" ;
28 when x"C" => Seg <= "1001110" ;
29 when x"d" => Seg <= "0111101" ;
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30 when x"E" => Seg <= "1001111" ;
31 when others => Seg <= "1000111" ; −− F
32 end case ;
33 end process ;
34

35 end behavioral ;

Listing 2.17 Hexadecimal to 7 segments decoder description

Figure2.17 shows an RTL for a complete adder of 4-bit. The adder has three
inputs, two vectors of 4 bits (A and B) and one signal of 1 bit (Cin), and two outputs,
one signal of one bit (Cou) and one vector of 4 bits (Sum). A and B are the numbers
to be added, Cin is the input carry, Cou is the output carry and Sum is the result of the
sum. Listing 2.18 shows a generic adder description, it can be seen in line 6 a generic
integer and its default value set to 4. Three internal signals of unsigned type are used
for data conversion and to store the internal sum (C, Ai, Bi). These conversions are
shown in lines 22 and 23 and the sum in line 26. Finally, the result is converted to
std_logic type in lines 29 and 30. The adder simulation is shown in Fig. 2.18.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee .numeric_std . a l l ;
4

Fig. 2.17 RTL adder

Fig. 2.18 Simulation adder
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5 entity adder_n is
6 generic (n : integer := 4) ;
7 port (
8 A : in std_logic_vector (n−1 downto 0) ;
9 B : in std_logic_vector (n−1 downto 0) ;

10 Cin : in std_logic ;
11 Sum : out std_logic_vector (n−1 downto 0) ;
12 Cou : out std_logic
13 ) ;
14 end adder_n;
15

16 architecture behavioral of adder_n is
17 signal C : unsigned(n downto 0) ;
18 signal Ai,Bi : unsigned(n−1 downto 0) ;
19 begin
20

21 −− data conversion to unsigned
22 Ai <= unsigned(A) ;
23 Bi <= unsigned(B) ;
24

25 −− adder
26 C <= (’0’ & Ai) + (’0’ & Bi) + (’0’ & Cin) ;
27

28 −− data conversion to std_logic
29 Sum <= std_logic_vector (C(n−1 downto 0)) ;
30 Cou <= std_logic (C(n) ) ;
31

32 end behavioral ;

Listing 2.18 Adder description

2.4.2 Sequential Circuits

A basic element in sequential logic is the flip_flop D, its RTL view is shown in
Fig. 2.19. The inputs for the flip_flop are: asynchronous reset (RST), clock (CLK),
and datum (D), the only output signal isQ. The simulation of the flip_flop is presented
in Fig. 2.20, here one can see how Q takes the value of D when the clock transition is
positive and holds this value until a new clock transition is presented. The behavioral
description of the flip_flop is presented in listing 2.19

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity flip_flop_d is
5 port (
6 RST : in std_logic ;
7 CLK : in std_logic ;
8 D : in std_logic ;
9 Q : out std_logic
10 ) ;
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Fig. 2.19 RTL Flip_Flop D

Fig. 2.20 Simulation Flip_Flop D

11 end flip_flop_d ;
12

13 architecture behavioral of flip_flop_d is
14 begin
15 process(RST,CLK)
16 begin
17 i f RST = ’1’ then
18 Q <= ’0’;
19 e ls i f rising_edge(CLK) then
20 Q <= D;
21 end i f ;
22 end process ;
23

24 end behavioral ;

Listing 2.19 Flip_Flop D description

Figure2.21 shows a RTLRTL of a parallel-parallel enable register of four bits,
each bit is stored in a flip_flop. Its inputs are: asynchronous reset (RST), clock (CLK),
enable (E), and data (D), the output signal is a vector Q. The simulation of the register
can be seen in Fig. 2.22. In the simulation is noted the register behavior, apart from
the clock, enable signal must be activated to load D, until E is active, the output Q
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Fig. 2.21 RTL
parallel–parallel enable
register

takes the value of D (in each positive clock transition), when E is not active Q holds
the last data.

Listing 2.20 is the description of the register, with a genericwidth. In this example,
it was necessary an internal signal Qi. Line 18 assigns Qi to the output Q. The enable
is described in lines 25–29, when E = 1 the register load the data D, when E = 0 it
holds the previous values.

Fig. 2.22 Simulation parallel–parallel enable register
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1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity register_epp is
5 generic (n : integer := 4) ;
6 port (
7 RST : in std_logic ;
8 CLK : in std_logic ;
9 D : in std_logic_vector (n−1 downto 0) ;

10 E : in std_logic ;
11 Q : out std_logic_vector (n−1 downto 0)
12 ) ;
13 end register_epp ;
14

15 architecture behavioral of register_epp is
16 signal Qi : std_logic_vector (n−1 downto 0) ;
17 begin
18 Q <= Qi;
19

20 process(RST,CLK)
21 begin
22 i f RST = ’1’ then
23 Qi <= (others => ’0’) ;
24 e ls i f rising_edge(CLK) then
25 i f E = ’1’ then
26 Qi <= D;
27 else
28 Qi <= Qi;
29 end i f ;
30 end i f ;
31 end process ;
32

33 end behavioral ;

Listing 2.20 Parallel–parallel enable register description

The next example is a left-shift register with a parallel output, the RTL view is
shown in Fig. 2.23, to simplify the RTL, common signals (asynchronous reset RST,
clockCLK, and enableE)were removed.One can see how the data flow fromflip_flop
Qi(0) to Q(1) . . . and so on, and the output signal takes the value in a parallel way.

Simulation of the left-shift register with parallel output is shown in Fig. 2.24. L
was fixed with a value of one. The register loads this value when the enable (E) is
equal to 1 and the clock (CLK) is in a positive transition. Previous values are moved
to the left, after four active enable cycles the register is fully load of ones. When the
enable is E = ‘0’ the register holds its present value.

Listing2.21 shows the behavioral description for the left-shift registerwith parallel
output. Line 18 shows the output parallel assignation. Lines 25–29 show the enable
and shift functions. In line 26 one can see that signal L is concatenated to vector Qi,
due to this one bit of the vector Qi must be removed, in this case the MSB (n–1).

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
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Fig. 2.23 RTL left-shift register parallel output

Fig. 2.24 Simulation left-shift register parallel output

3

4 entity reg_shift is
5 generic (n : integer := 4) ;
6 port (
7 RST : in std_logic ;
8 CLK : in std_logic ;
9 L : in std_logic ;

10 E : in std_logic ;
11 Q : out std_logic_vector (n−1 downto 0)
12 ) ;
13 end reg_shift ;
14

15 architecture behavioral of reg_shift is
16 signal Qi : std_logic_vector (n−1 downto 0) ;
17 begin
18 Q <= Qi;
19
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Fig. 2.25 RTL of the ascending/descending enable counter

20 process(RST,CLK)
21 begin
22 i f RST = ’1’ then
23 Qi <= (others => ’0’) ;
24 e ls i f rising_edge(CLK) then
25 i f E = ’1’ then
26 Qi <= Qi(n−2 downto 0) & L;
27 else
28 Qi <= Qi;
29 end i f ;
30 end i f ;
31 end process ;
32

33 end behavioral ;

Listing 2.21 Left-Shift register parallel output description

Other common sequential circuit is the counter. Figure2.25 shows a RTL view of
a counter ascending/descending with enable module 4. The inputs signals are: clock
(CLK), asynchronous reset (RST), and operation counter (OPC). The output is the
signal vector Q of 2-bit.

Ascending/descending enable counter simulation is shown in Fig. 2.26. When
OPC is “00” or “01” the present value of the counter is holding. When OPC = “11”
the value is increased in one each clock cycle and when OPC = “10” the value is
decreased in one each clock cycle.

The description of the ascending/descending enable counter is shown in listing
2.22. The behavior of input signal OPC is described from line 24–30. In this example
Qi was defined of type unsigned. Line 17 shows the output assigned, due to Qi is the
type unsigned a signal conversion must be done using std_logic_vector.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee .numeric_std . a l l ;
4

5 entity counter is
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Fig. 2.26 Simulation of the ascending/descending enable counter

6 port (
7 RST : in std_logic ;
8 CLK : in std_logic ;
9 OPC : in std_logic_vector(1 downto 0) ;

10 Q : out std_logic_vector(1 downto 0)
11 ) ;
12 end counter ;
13

14 architecture behavioral of counter is
15 signal Qi : unsigned(1 downto 0) ;
16 begin
17 Q <= std_logic_vector (Qi) ;
18

19 process(RST,CLK)
20 begin
21 i f RST = ’1’ then
22 Qi <= (others => ’0’) ;
23 e ls i f rising_edge(CLK) then
24 i f OPC = "11" then
25 Qi <= Qi + 1;
26 e ls i f OPC = "10" then
27 Qi <= Qi − 1;
28 else
29 Qi <= Qi;
30 end i f ;
31 end i f ;
32 end process ;
33

34 end behavioral ;

Listing 2.22 Counter ascending/descending enable description

The last example is a finite state machine (FSM). The inputs of the FSM are:
asynchronous reset (RST), clock (CLK), enable (A), and enable (B). The output is a
vector of 2 bits (Y). The FSM is shown in Fig. 2.27. The FMS has four states, when
the reset is active the FSM goes to state 1. For each state if signal A = ‘0’ then the
FSM stays is the actual state, if A = ‘1’ and B = ‘1’ the FSM goes to the next state,
for A = ”1’ and B = ‘0’ the FSM returns to the previous state. In state one (S1) the
output is Y = “00”, Y = “01” for S2, Y = “10” for S3 and Y = “11” for S4. This is
a Moore Machine, then, the output depends on the actual state.
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Fig. 2.27 Finite state machine

Fig. 2.28 RTL of the finite state machine

RTL view of the FSM is shown in Fig. 2.28. Simulation of the FSM is presented
in Fig. 2.29, here one can see that the FSM has a behavior as the previous counter
example, signal A and B represent the signal OPC in the counter.

1 library ieee ;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity fsm is
5 port (
6 RST : in std_logic ;
7 CLK : in std_logic ;
8 A : in std_logic ;
9 B : in std_logic ;
10 Y : out std_logic_vector(1 downto 0)
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Fig. 2.29 Simulation of the FSM

11 ) ;
12 end fsm;
13

14 architecture behavioral of fsm is
15 signal Qi : std_logic_vector(1 downto 0) ;
16 begin
17 Y <= Qi;
18 process(RST,CLK)
19 begin
20 i f RST = ’1’ then
21 Qi <= "00" ;
22 e ls i f rising_edge(CLK) then
23 case Qi is
24 when "00" =>
25 i f A = ’0’ then
26 Qi <= "00" ;
27 e ls i f B = ’1’ then
28 Qi <= "01" ;
29 else
30 Qi <= "11" ;
31 end i f ;
32

33 when "01" =>
34 i f A = ’0’ then
35 Qi <= "01" ;
36 e ls i f B = ’1’ then
37 Qi <= "10" ;
38 else
39 Qi <= "00" ;
40 end i f ;
41

42 when "10" =>
43 i f A = ’0’ then
44 Qi <= "10" ;
45 e ls i f B = ’1’ then
46 Qi <= "11" ;
47 else
48 Qi <= "01" ;
49 end i f ;
50

51 when others =>
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52 i f A = ’0’ then
53 Qi <= "11" ;
54 e ls i f B = ’1’ then
55 Qi <= "00" ;
56 else
57 Qi <= "10" ;
58 end i f ;
59 end case ;
60 end i f ;
61 end process ;
62

63 end behavioral ;

Listing 2.23 Finite state machine behavioral description

The behavioral description of the FSM is presented in listing 2.23. To describe the
FSM a case structure is used, for each state one case is used. The output is assigned
in line 17.



Chapter 3
Matlab-Simulink Co-Simulation

3.1 Co-Simulation Active-HDL/Matlab-Simulink

Active-HDL allows the generation of block descriptions for Simulink [17].
To generate it, go to design browser window and give a right click on the file to
be generated. An option menu is displayed as shown by Fig. 3.1. In this menu, click
on Generate Block Description for Simulink option. Now a Simulink block of the
VHDL description is obtained. In order to use it, open Matlab and then Simulink.

Figure3.2 shows the Simulink Library Browser window, if the link between Mat-
lab and Active-HDL was generated correctly, Active-HDL Blockset appears in this
window, if not visit “www.aldec.com”. to find a solution. In theActive-HDLBlockset
the following blocks are contained:

• Active-HDL Co-Sim is a block that stores general co-simulation settings and
then passes them to Active-HDL invoking its instances during the start-up of the
co-simulation session.

• HDL Black Box is a block that represents in the Simulink environment an HDL
unit that will be co-simulated using Simulink and Active-HDL.

• HDL Black Box for DSP Builder is a block that can be integrated with a model
coming from Altera DSP Builder ver. 7.1 and higher.

• HDL Black Box for Synplify DSP is a block that can be integrated with a model
coming from Synplify DSP ver. 3.2 and higher.

• HDL Black Box Manager for System Generator 8.x is a block that manages
instantiation of HDL black boxes within a model coming from Xilinx System
Generator ver. 8.x or newer.

Open a new Simulink Model. In this new model, add the Active-HDL Co-sim
block, then give two clicks on it to configure it. Figure3.3 shows the configuration
window of the Active-HDL Co-Sim block. One important option is the Reference
period in which the user selects the iteration time for Active-HDL and Simulink.

© Springer International Publishing Switzerland 2016
E. Tlelo-Cuautle et al., Engineering Applications of FPGAs,
DOI 10.1007/978-3-319-34115-6_3
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Fig. 3.1 Generate block description for simulink

Fig. 3.2 Simulink library browser
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Fig. 3.3 Active-HDL Co-Sim

Now include aHDLBlackBox into the newmodel as shown in Fig. 3.4. Awindow
to select one M-file is displayed. Here, the circuit to be simulated into simulink
must be selected. In the image example there is just one file “adder_n”, which was
explained in Chap.2. The M-files must be located into the current working directory,
if not, add the directory to Matlab search path.

When the Black box is configured, the next step is the parameters selection.
Figure3.5 shows the parameters of the black box. In this case, in the option of Input
Ports, for the adder_n the inputs are: A, B and, Cin. Inputs A and B are vectors of
n-bit and Cin is the carry input; here the cast of each input can be changed (unsigned,
signed, boolean) and some other features.

Figure3.6 shows the output ports, for adder_n are: SumandCou. Like the previous
case, the cast can be changed.

As can be seen inListing2.18, the adder has one generic signal “n” the type integer,
this parameter canbemodified into the parameters option as shown inFig. 3.7.Default
value in this case is four and the actual value (also four) can be modified to increase
or decrease the number of bits for the adder. Then, this is an excellent option that
exploit the reusability of the VHDL descriptions, so with the modification of this
parameter an adder of 4 or 5 or n bits can be included into the simulation.

http://dx.doi.org/10.1007/978-3-319-34115-6_2
http://dx.doi.org/10.1007/978-3-319-34115-6_2
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Fig. 3.4 HDL Black Box Configuration

Fig. 3.5 HDL Black Box Parameters—Input ports

If the design has clocks or any signal to be synchronous, they can be stimulated
in clocks option. This option is shown in Fig. 3.8. In the case of the adder there are
no clock or synchronization signals.
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Fig. 3.6 HDL Black Box Parameters—Output ports

Fig. 3.7 HDL Black Box Parameters—Parameters

Any signal can be internally stimulated, for example, an asynchronous reset can
be stimulated through a formula. This stimulation is done in the stimulators option
shown in Fig. 3.9. Signals can be stimulated here or using an external source (external
because is not included into the black box, internal because is stimulated into the
black box).

The last option corresponds to waveforms, in this option the user must select
the signal to be included into the Active Simulator (Fig. 3.10). When the model is
running, matlab automatically open Active and accomplish the simulation using the
stimulus selected in Simulink.

Figure3.11 shows the adder_n connected in Simulink, the inputs are stimulated
with a constants and the outputs are connected to displays. Input A is 8, B = 10 and
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Fig. 3.8 HDL Black Box Parameters—Clocks

Fig. 3.9 HDL Black Box Parameters—Stimulators

Cin = 1, the outputs are: Sum = 3 and Cou = 1. In hexadecimal the output is ×13
and in decimal is 19.

Another simple example using co-simulation is presented in Fig. 3.12. In this case,
the circuit to be simulated is a ROM. The ROM contains the sum of two sines. The
input ADD is the ROM address, and it is stimulated using a Free-Running Counter
block. The output D is connected to a Scope in order to be the signal. Figure3.13
shows the signal displayed in the Scope and the sum of sines is clear. Figure3.14
shows the signals input ADD and output D simulated in Active, this simulation was
automatically made by Simulink. Now, any VHDL description can be included into
the Simulink using the Active Block Box, once in simulink all the Matlab tools can
be used to improve the simulation process.
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Fig. 3.10 HDL Black Box Parameters—Waveforms

Fig. 3.11 Adder_n in Simulink

3.2 Co-Simulation Xilinx System
Generator/Matlab-Simulink

SystemGenerator byXilinx allows the automaticVHDLcode generation and simula-
tion usingMatlab-Simulink [18]. Similar toActive,XilinxSystemGeneration creates
a blockset library to be used into Simulink. The blockset is shown in Fig. 3.15, its
content

• AXI4 Blocks Includes every block that supports the AXI4 Interface.
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Fig. 3.12 ROM

Fig. 3.13 ROM Scope

• Basic Elements Blocks Includes standard building blocks for digital logic.
• Communication Blocks Includes forward error correction and modulator blocks,
commonly used in digital communications systems.

• Control Logic Blocks Includes blocks for control circuitry and state machines.
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Fig. 3.14 Active-HDL ROM Simulation

• Data Type Blocks Includes blocks that convert data types (includes gateways).
• DSP Blocks Includes Digital Signal Processing (DSP) blocks.
• Floating-Point Blocks Includes blocks that support the Floating-Point data types
as well as other data types. Only a single data type is supported at a time. For
example, a floating-point input produces a floating-point output; a fixed-point
input produces a fixed-point output.

• Index Blocks Includes all System Generator blocks.
• Math Blocks Includes blocks that implement mathematical functions.
• Memory Blocks Includes blocks that implement and access memories.
• Tool Blocks Includes “Utility” blocks, e.g., code generation (System Generator
token), resource estimation, HDL co-simulation, etc.

Figure3.16 shows the blocks contained in the Xilinx DSP blockset, all the blocks
with background color blue can be implemented into the FPGA and are free. The
blocks with background white are for utility or tool. Green background color blocks
go into the FPGA and are Licensed Cores, it is necessary to purchase the Core license
in the Xilinx web.

Figure3.17 shows the block contained in the XilinxMath blockset, as one can see
there are several mathematical functions to be used. From here some blocks will be
used to show an example.

In a new simulink model, a free counter, an add, and a constant are included.
These blocks were taken from the Xilinx BlockSet—Math, also two gateways out
were included. An scope taken from the sinks tools is added to themodel. Figure3.18
shows the interconnection blocks. The adder is connected directly to the scope and



70 3 Matlab-Simulink Co-Simulation

Fig. 3.15 Xilinx System Generator BlockSet

Fig. 3.16 Xilinx BlockSet—DSP

to one adder input. The second adder input is connected to a constant with a value
of four. The sum is connected to the scope.

The scope is shown in Fig. 3.19, here one can see the simulation of the generated
circuit. The top signal corresponds to the counter, it begins at zero and increases its
value by one. The bottom signal corresponds to the adder sum, as one can see, it also
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Fig. 3.17 Xilinx BlockSet—Math

Fig. 3.18 Adder—Xilinx System Generator

begins at zero and the sum with the constant (with a four value) is reflected in the
second sample time, this is because the adder has one time delay.

In order to generate the VDHL code, double click the Xilinx System Generation
icon, this allows to configure the parameters to generate the code. Figure3.20 shows
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Fig. 3.19 Scope—Xilinx System Generator

the System Generation configuration window, here the user selects the type of com-
pilation, the FPGA to be implemented, language (VHDL or Verilog), the VHDL
library, target directory, and synthesis and implementation strategy.

3.3 Co-Simulation Altera DSP Builder/Matlab-Simulink

Altera provides a tool for automatic code generation and Matlab-Simulink co-
simulation. This tool is the Altera DSP Builder [19]. The Altera DSP Builder is
shown in Fig. 3.21, which gives the following options:

• Altlab
• Arithmetic
• Boards
• Complex Type
• Gate & Control
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Fig. 3.20 Xilinx System Generator

Fig. 3.21 Altera DSP Builder
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Fig. 3.22 Altera DSP Builder—Arithmetic Blockset

Fig. 3.23 Altera DSP Builder—Example

• Interfaces
• IO & Bus
• MegaCore Functions
• Rate Change
• Simulation Blocks Library
• State Machine Functions
• Storage

Figure3.22 shows the arithmetic blockset contents, which include

• Barrel Shifter
• Divider
• Magnitude
• Pipelined Adder
• Variable precision DSP block
• Product
• Multiplier
• DSP Block
• Bit level Sum of Products
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• Comparator
• Gain
• Multiply accumulate
• SOP Tap
• Square Root
• Multiply Add
• Increment Decrement
• Counter
• Differentiator
• Integrator
• Parallel adder subtractor
• Sum of products

As one can be realized, the Altera DSP Builder has a lot of tools to develop a
complete design. A simple example is shown in Fig. 3.23.

Matlab-Simulink simulation of the Altera DSP Builder simulation and its imple-
mentation using an Altera Board are left to the reader.



Chapter 4
Chaos Generators

4.1 On Piecewise-Linear (PWL) Functions

This section shows the description of three mathematical models associated to
piecewise-linear (PWL) functions that can be used in a dynamical system to generate
from double-scroll to multi-scroll chaotic attractors. Those PWL functions can be
applied to a third-order dynamical system, can be increased in a systematic way, and
can be symmetric or nonsymmetric.

4.1.1 Saturated Function Series as PWL Function

Acontinuous-time chaotic oscillator can bemodeled by (4.1), where x, y and z are the
state variables with coefficients a, b, c and d1, which are constants and take values in
the interval [0, 1], and also includes a PWL function f (x; q) that can be implemented
by saturated function series. For instance, f (x; q) can be increased in number of
saturated levels, which are associated to the number of scrolls being generated. In
discrete electronics, f (x; q) can be implemented using comparators [21], but they
have low-frequency response [22–24], and it can be implemented much better using
digital circuitry, e.g., FPGAs [25]. In this dynamical system, the PWL function
depends on the state variable x, and it can be described by linear segments as shown
in (4.2), where two saturated levels are generated, as shown in Fig. 4.1, and where
q1 denotes the break-points and k1 the saturation levels, so that the slope beings
2k1/2q1 = k1/q1.

ẋ = y

ẏ = z

ż = −ax − by − cz + d1f (x; q)
(4.1)

© Springer International Publishing Switzerland 2016
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Fig. 4.1 3-segments PWL function based on saturated function series

f0(x; q) =

⎧
⎪⎨

⎪⎩

k1, if x > q1
k1
q1
x, if |x| ≤ q1

−k1, if x < −q1,

(4.2)

This PWL function can be extended and shifted to generate odd and even numbers
of saturation levels that are related to the number of scrolls to be generated. Thinking
on design automation, one can describe the PWL function by introducing break-
points and saturation levels from the left to the right side on the horizontal axes. The
slopes can be evaluated using these values, so that one can describe symmetrical and
nonsymmetrical PWL functions.

4.1.2 Chua’s Diode as PWL Function

Lets us consider the dynamical system described by three state variables, as given
by (4.3), where f (x) is a PWL function consisting of negative slopes also known
as Chua’s diode [26]. Depending on the number of scrolls being generated, the
negative slopes increase in a systematic way for odd and even number of scrolls.
Figure4.2 shows a PWL function with negative slopes m1 and m2 and break-points
±b1. That PWL function can generate 2-scrolls and more even number of scrolls can
be generated by increasing the break-points and retaining the same slopes m1 and
m2.

In (4.3), x, y, and z are the state variables, α and β are coefficients that are real
numbers in general, and f (x) models Chua’s diode as a PWL function with negative
slopes that can be described by (4.4). It is function of the state variable x and of the
real constants mi and bi that define the slopes and break-points to generate n number
of scrolls.
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Fig. 4.2 3-segments PWL function based on negative slopes, also known as Chua’s diode

ẋ = α(y − x − f (x))

ẏ = x − y + z

ż = −βy

(4.3)

f (x) = m2n−1x + 1

2

2n+1∑

i−q

(mi−1 − mi)(|x + bi| − |x − bi|) (4.4)

4.1.3 Sawtooth as PWL Function

Chua’s circuit can also be modeled by three state variables and a sawtooth as the
PWL function [27], as given by (4.5) and shown in Fig. 4.3. x, y and z are the state
variables, and again, as for the dynamical system based on Chua’s diode, α and β

are coefficients that are real numbers in general. In this case, f (x) models a PWL
function with sawtooth behavior consisting of positive slopes described by (4.6) and
(4.7) for generating even and odd number of scrolls, respectively.

ẋ = α(x − f (x))

ẏ = x − y + z

ż = −βy

(4.5)

f1(x) = ξ{x − A1[−sgn(x) +
N−1∑

i=0

(sgn(x + 2iA1) + sgn(x − 2iA1))]} (4.6)

f1(x) = ξ{x − A1[−sgn(x) +
N−1∑

i=0

(sgn(x + (2i + 1)A1) + sgn(x − (2i + 1)A1))]} (4.7)
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Fig. 4.3 3-segments PWL function based on a sawtooth function

4.2 On the Simulation of Chaos Generators for FPGA
Implementation

Chaotic systems modeled by continuous or discrete equations are solved or sim-
ulated using digital hardware resources, e.g., the majority of them using comput-
ers. That way, simulating dynamical systems for large times may lead to non-
convergence to the desired solution.However, as the number of bits that are processed
by a computer or a digital hardware is finite, such a problem is a big challenge
and one just knows that some errors are present. Detailed comments are given
in [28], where one can appreciate the following sentence: due to inherent proper-
ties of digital computers results found by numerical simulations are almost never
exact. Nevertheless, computer-generated solutions are often accepted as true solu-
tions.

In this manner, from what is demonstrated in [28], one can implement contin-
uous chaotic oscillators using FPGAs, just to verify or observe chaotic behavior.
In addition, guaranteeing such chaotic behavior in a very large time is a hard open
challenge.

Another challenge is the selection of the numerical method to solve a dynami-
cal system of equations. One must keep in mind that the use of simple integration
methods leads to reduced hardware resources in FPGAs, but the rounding errors
are present more than by applying more robust integration methods that can have
variable order and/or variable step size. However, if one guarantees that the solution
converges, it does not matters what kind of method is used, the chaotic behavior will
be similar, but the problem on rounding errors will always be present. Below, we
show that the solution of a dynamical system like the ones listed above converges
when using Forward Euler method. In this manner, the simulated dynamical system
can be implemented in an FPGA.
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The one-stepmethod known as ForwardEuler, can be applied for solving a dynam-
ical system described in the general form by (4.8). In its discrete form it is given by

(4.9), where φ(t, y, h) is known as an increment function and λ =
(

∂f
∂y

)

n
[29, 30].

dy

dt
= f (t, y) = λy, y(t0) = y0, t ∈ [t0, b] (4.8)

yn+1 = yn + hφ(tn, yn, h), n = 0, 1, ...,N − 1 (4.9)

Assuming that (4.8) has a unique solution in [t0, b] and that y(t) ∈ C(p+1) [t0, b]
for p ≥ 1, then the solution y(t) can be expanded (Taylor’s series) at any point tn like
in (4.10). Considering (4.11) and that hφ(tn, yn, h) is obtained from hφ(tn, y(tn), h),
then the approximated value for yn instead of the exact value of y(tn) is obtained from
Taylor’s seriesmethod of order p and described by (4.12) to approximate y(tn+1) [30].

y(tn+1) = y(tn) + hy′(tn) + h2

2! y
′′(tn) + ... (4.10)

hφ(tn, y(tn), h) = hy′(tn) + h2

2! y
′′(tn) + ... + hp

p! y
(p)(tn) (4.11)

yn+1 = yn + hφ(tn, yn, h), n = 0, 1, 2, ...,N − 1 (4.12)

Therefore, if p = 1 one gets Euler’s method, as described by (4.13)

yn+1 = yn + hf (tn, yn), n = 0, 1, 2, ...,N − 1 (4.13)

From an stability analysis considering (4.8) and assuming that ∂f /∂y is relatively
invariant in the region of interest, then the solution to (4.8) is given by (4.14), and
considering that t = t0 + nh one gets (4.15),

y(t) = y(t0)e
λ(t−t0) (4.14)

y(tn) = y(t0)e
λnh = y0(e

λh)n (4.15)

When applying a one-step method to (4.8), the solution is given by (4.16), where
c1 is a constant and E(λh) ≈ eλh [30].

yn = c1(E(λh))n (4.16)
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Considering the set of equations for the chaotic oscillator shown in (4.17), it has
a unique equilibrium point at (0, 0, 0), then its characteristic equation is given by
(4.18) [31],

ẋ = y

ẏ = z

ż = −ax − by − cz + d1f (x1; h1, p1, q1)
(4.17)

λ3 + cλ2 + bλ + a = 0 (4.18)

Solving (4.18) one gets: λ1 = −η and λ2,3 = α1 ± βi, where λ1 < 0, α1 > 0 and
β �= 0. Then, (4.17) has a negative eigenvalue and one pair of complex eigenvalues
with positive real part [31]. As a result, a numerical method solving (4.17) will
simulate chaotic behavior under the conditions of λ1, α1, β. This result is extended
to a multi-scroll chaotic oscillator because in (4.17), f (x1; , h1, p1, q1) is a PWL
function consisting of slopes, offsets and saturation values. For example, simulating
the generation of 2-scrolls, the PWL function is given by (4.19), where α = 0.0165,
m = 60.606, a = b = c = d1 = 0.7. In this case: λ1 = −0.8410142, λ2,3 =
0.07050 ± 0.90201i.

f (x) =
⎧
⎨

⎩

1 if x > α
x
m if |x| ≤ α

−1 if x < −α

(4.19)

Since (4.17) has at least one λ > 0, then Euler’s method is relatively stable if
| E(λh) |≤ eλh for λ > 0. Therefore, applying (4.13) for solving (4.17) will lead to
the true solution if for an arbitrary initial condition y0,

lim
h→0

yn = y(t) for t ∈ [t0, b], tn = t (4.20)

Finally, considering the sampling theorem, τmin = 1
f , the condition is h ≤ τmin

2 in
order to the numerical method to converge to the true solution when h → 0, i.e.,
better when h is relatively low, as it is in all the cases simulated in this book.

4.2.1 One-Step Methods for Simulating the Generation
of 2-Scrolls

Forward Euler is the simple predictive method for solving initial value problems.
The iterative equation is given by (4.21), where φ is the function of y, yn is the initial
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value of the state variable, yn+1 is the computed value, and h is the step size that must
be small as demonstrated above.

yn+1 = yn + φh (4.21)

Another one-step and more accurate method is Runge–Kutta of higher order. For
instance, the fourth order (Runge–Kutta) is given by (4.22), in which k1, k2, k3 and
k4 are evaluated by (4.23).

yn+1 = yn + 1

6
h(k1 + k2 + k3 + k4) (4.22)

k1 = f (xn, yn)

k2 = f (xn,
1

2
h, yn + 1

2
hk1)

k3 = f (xn,
1

2
h, yn + 1

2
hk2)

k4 = f (xn,
1

2
h, yn + 1

2
hk3)

(4.23)

As one can infer from (4.22), the hardware realization requires multipliers,
dividers, adders and subtractors. At the simulation level this is not an issue, because
the computer just computes, but thinking on hardware implementations, e.g., on
using FPGA, the available resources are limited and this is an issue for minimizing
hardware resources or number of arithmetic operations.

By applying the Forward Euler method, (4.24)–(4.26) describe the discretiza-
tion of the dynamical systems given in (4.1), (4.3) and (4.5), respectively. Those
dynamical systems embed PWL functions to generate 2-scrolls.

xn+1 = xn + hyn
yn+1 = yn + hzn
zn+1 = zn + h(−ax − by − cz + d1f (xn; q))

(4.24)

xn+1 = xn + hα(yn − xn − m1xn − 1

2
(m0 − m1)(|xn + b| − |xn − b|))

yn+1 = yn + h(xn − yn + zn)

zn+1 = zn + h(−β ∗ y)

(4.25)

xn+1 = xn + h(α(xn − ξ(xn − A1sgn(xn))))

yn+1 = yn + h(xn − yn + zn)

zn+1 = zn + h(−βy)

(4.26)
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Fig. 4.4 Chaos generator using saturated function series as PWL function. a State variable x.
b Portrait x–y

Fig. 4.5 Chaos generator using Chua’s diode as PWL function. a State variable x. b Portrait x–y

Figure4.4 shows the simulation of the chaotic oscillator based on saturated func-
tion series. The state variable x is shown on the left and the phase-space portrait
between state variables x–y on the right. Figure4.5 shows the behavior of the state
variable x for the Chua’s chaotic oscillator based on Chua’s diode. Finally, Fig. 4.6
shows Chua’s chaotic oscillator using sawtooth as PWL function. In all cases the
phase-space portraits are shown between the state variables x–y.

4.3 Symmetric and Nonsymmetric PWL Functions

Chaotic oscillators based on PWL functions are relatively easier to implement than
those based on continuous and nonlinear functions. Those PWL functions can be
symmetric and nonsymmetric. For instance, for symmetric PWL functions based
on saturated functions series one can increase the number of linear segments in a
systematic way, because the slopes are the same and the saturated levels are shifted
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Fig. 4.6 Chaos generator using sawtooth as PWL function. a State variable x. b Portrait x–y

with amultiplicative constant value. It is similar for Chua’s diode, that can have 2 or 3
slopes depending if one is generating an even or odd number of scrolls, respectively.
The sawtooth increases with the same slope and same shift of them. Those PWL
functions can be modified to compute a high value of the MLE, as well as by varying
the coefficient values [32].

If one is interested in changing the symmetry of the PWL functions, the slopes,
saturation levels and shift values should be different among them, and it may increase
the MLE value.

4.3.1 Symmetric PWL Function

Considering the chaotic oscillator described by (4.1), one can vary the coefficients
a, b, c and d1, to search for a high MLE value. One can also vary the break-points
q and shift all saturated levels. Figure4.7 shows 5 segments with 3 saturated levels
to generate 3-scrolls, which can be described by (4.27). From this PWL function,
one can add more segments in both quadrants (1 and 3) to generate odd number of
scrolls. To generate even number of scrolls, 2 saturated levels are required, which
can be increased to generate more than 2 but even scrolls. See for example Fig. 4.8
that has 7 segments with 4 saturated levels to generate 4-scrolls, just by increasing
the PWL function from Fig. 4.1. Those PWL functions are mathematically described
in a similar way from (4.27).

f0(x; q) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1, if x > q2
k1−k0
q2−q1

x, if q1 ≤ x ≤ q2
k0, if |x| < q1
k0−k1

−q1+q2
x, if − q1 ≥ x ≥ −q2

−k1, if x < −q2,

(4.27)
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Fig. 4.7 PWL function to
generate a 3-scrolls chaotic
attractor

Fig. 4.8 PWL function to
generate a 4-scrolls chaotic
attractor

The PWL functions given above can be increased in a systematic way to generate
symmetric functions. In such a case, the values for qi and ki can be specified with
the same shift values so that all the slopes are always equal to k/q. As examples: to
generate 2-scrolls, the PWL function can have |q1| = 0.0165, and |k1| = 1, leading
to a slope equal to 0.0165. Equation (4.28) shows an easy way to set saturation levels
ki for generating even number of scrolls, and (4.29) lists the break-points qi, which
are also symmetrical and increased in a systematic way. For generating odd number
of scrolls, the saturated levels can be set as shown by (4.30), and the corresponding
break-points can be set as shown by (4.31).

ki = {...,−7,−5,−3,−1, 1, 3, 5, 7, ...} (4.28)

qi = {...,−2.0165,−1.9835,−0.0165, 0.0165, 1.9835, 2.0165, ...} (4.29)

ki = {...,−8,−6,−4,−2, 0, 2, 4, 6, 8, ...} (4.30)

qi = {...,−2.9835,−1.0165,−0.9835, 0.9835, 0.0165, 1.9835, ...} (4.31)
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Fig. 4.9 Nonsymmetric
PWL function having 5
segments as in Fig. 4.7, but
with different slopes and
duration of the saturated
levels

Fig. 4.10 Nonsymmetric
PWL function having 7
segments as in Fig. 4.8, but
with different slopes and
duration of the saturated
levels

4.3.2 Nonsymmetric PWL Function

When there is not a possibility of mathematically representing both the saturated
levels ki and the break-points qi, the PWL function is nonsymmetric. This means
that both the slopes and the duration of the saturated levels are not the same. That
way, the PWL functions in Figs. 4.7 and 4.8 can be nonsymmetric ones by varying
the values of either or both ki and qi.

One example is shown in Fig. 4.9 for generating 3-scrolls. Another example is
shown in Fig. 4.10 for generating 4-scrolls. When plotting the phase-space portrait,
the scrolls have not the same shape. However, to observe the desired number of
scrolls being generated, one should verify that the state variables have trajectories
crossing all break-points. Some examples are given in the following sections.

4.3.3 VHDL Simulation and Computer Arithmetic Issues

Before creating theVHDLcode for simulating a chaotic oscillator, onemust establish
the correct computer arithmetic, as described in Chap. 1. In this manner, by adopting
fixed-point notation, the format of the digitalword depends on the ranges of the values
for the coefficients, PWL functions and amplitude of the state variables. It could be
possible to divide or scale high values to have ranges between ±1, ±10, ±20, and
so on. Some examples are listed in Table4.1, where 28 bits can be represented in a

http://dx.doi.org/10.1007/978-3-319-34115-6_1
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Table 4.1 Fixed-point formats for a 28-bits word

Format Sign Integer part Fractional part

4.24 1 bit 3 bits 24 bits

0 000 .000000000000000000000000

5.23 1 bit 4 bits 23 bits

0 0000 .00000000000000000000000

Fig. 4.11 Block description of the adder, multiplier and subtractor processing 28 bits, and showing
pins for reset and clock

4.24 format or 5.23 if the amplitude varies a little bit higher. In any case, one must
consider or estimate the high value that a chaotic oscillator can generate from the
operations like multiplication, addition, subtraction, etc.

Once the computer arithmetic is established, the hardware implementation is
performed according to the numerical method used to solve the dynamical system of
equations. Thus, one identifies the kind of blocks to be used, such as: comparators,
shifters, adders, subtractors, multipliers, multiplexers, and so on.

The chaotic oscillators mentioned above can be implemented with similar hard-
ware blocks, except the PWL functions, which can be implemented including com-
parators to solve conditionals like in (4.27). Each block having ports for processing
words of length= 28-bits. To control the speed of the hardware, all blocks used herein
have pins to include an asynchronous reset and the clock signal. Figure4.11 shows
the generic blocks for the adder, multiplier and subtractor, more detailed descriptions
with other formats can be seen in [25, 33].

Among the currently available VHDL software resources, we list the VHDL
code for 4 blocks: adder, multiplier, subtractor and comparator. All of them are for
processing 28 bits. The first block is the adder that includes clock and reset. In this
case, using IEEE library, the entity is named “sumador,” having 5 ports for allocating
clock, reset and 3 data buses. The architecture is named “complicado,” it uses reset
and clock signals to process data within the ports of entity “sumador,” as shown
below. The VHDL code for the subtractor is quite similar to the one for the adder,
juts by changing plus by minus.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee .numeric_std . a l l ;
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4 entity sumador is
5 port (
6

7 clock_50: in std_logic ;
8 reset : in std_logic ;
9 dato_1: in std_logic_vector(27 downto 0) ;

10 dato_2: in std_logic_vector(27 downto 0) ;
11 dato_3: out std_logic_vector(27 downto 0):=(others => ’0’)
12 ) ;
13 end sumador;
14 architecture complicado of sumador is
15 begin
16 process(clock_50 , reset ,dato_1 ,dato_2)
17 begin
18 i f reset = ’1’ then
19 dato_3 <= (others => ’0’) ;
20 e ls i f rising_edge(clock_50) then
21 dato_3 <= std_logic_vector (signed(dato_1) + signed(dato_2) ) ;
22 end i f ;
23 end process ;
24 end complicado;

Listing 4.1 VHDL code for an adder

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee .numeric_std . a l l ;
4 entity restador is
5 port (
6

7 clock_50: in std_logic ;
8 reset : in std_logic ;
9 dato_1: in std_logic_vector(27 downto 0) ;
10 dato_2: in std_logic_vector(27 downto 0) ;
11 dato_3: out std_logic_vector(27 downto 0):="0000000000000000000000000000"
12 ) ;
13 end restador ;
14 architecture complicado of restador is
15 begin
16 process(clock_50 , reset ,dato_1 ,dato_2)
17 begin
18 i f reset = ’1’ then
19 dato_3 <= (others => ’0’) ;
20 e ls i f rising_edge(clock_50) then
21 dato_3 <= std_logic_vector (signed(dato_1) − signed(dato_2) ) ;
22 end i f ;
23 end process ;
24 end complicado;

Listing 4.2 VHDL code for a subtractor

For the case of the multiplier, when multiplying two 28-bits words, one should
identify the bits allocating the result, so that amore elaborated architecture is created.
See the following VHDL code where the result is assigned to dato_3 but prior to this,
the multiplication is performed between two data and assigned to an extra variable
named “sena1,” from which the bits allocating the result are identified from 51 down
to 24.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee .numeric_std . a l l ;
4 entity multiplicador is
5 port (
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6 clock_50: in std_logic ;
7 reset : in std_logic ;
8 dato_1: in std_logic_vector(27 downto 0) ;
9 dato_2: in std_logic_vector(27 downto 0) ;

10 dato_3: out std_logic_vector(27 downto 0):=(others=>’0’)
11 ) ;
12 end multiplicador ;
13 architecture complicado of multiplicador is
14 signal sena1: signed(55 downto 0):= (others=>’0’) ;
15 begin
16 process(clock_50 , reset )
17 begin
18 i f reset = ’1’ then
19 dato_3 <= (others => ’0’) ;
20 e ls i f rising_edge(clock_50) then
21 sena1 <= (signed(dato_1)∗signed(dato_2) ) ;
22 dato_3 <= std_logic_vector (sena1(51 downto 24)) ;
23 end i f ;
24 end process ;
25 end complicado;

Listing 4.3 VHDL code for a multiplier

The comparator is a more complex block. If one thinks on implementing PWL
functions, as the ones for the saturated function series, one should declare as many
ports as saturation levels and slopes the PWL function has. The architecture is also
more elaborated and real constants (as the break-points) can be declared by binary
notation, as shown in the following VHDL code.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee . std_logic_unsigned . al l ;
4 use ieee . std_logic_arith . a l l ;
5

6 entity comparador is
7 port (
8 clock_50: in std_logic ;
9 reset : in std_logic ;

10 dato_sat0 : in std_logic_vector(27 downto 0) ; −−−Saturation Level
11 .
12 .
13 .
14 dato_sat (N−1): in std_logic_vector(27 downto 0) ; −−Saturation Level
15 dato_pen0: in std_logic_vector(27 downto 0) ; −−Slope
16 .
17 .
18 .
19 dato_pen(N−2): in std_logic_vector(27 downto 0) ; −−Slope
20 dato_X: in std_logic_vector(27 downto 0) ; −− X
21 dato_S: out std_logic_vector(27 downto 0) −−Output
22 ) ;
23 end comparador;
24

25 architecture complicado of comparador is
26 constant q0: std_logic_vector(27 downto 0):="1000000110011001100110011010" ;
27 −−Breakpoints in Binary
28 .
29 .
30 .
31 constant q(2∗N−1): std_logic_vector(27 downto 0):="0111111001100110011001100110
32 " ; −−Breakpoints in Binary
33 begin
34 process(clock_50 , reset ,dato_X)
35 begin
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36 i f reset=’1’ then
37 dato_S<= (others => ’0’) ;
38 e ls i f rising_edge(clock_50) then
39 i f dato_X > q0 AND dato_X < q1 then
40 dato_S <= dato_sat0 ;
41 .
42 .
43 .
44 e ls i f dato_X > q(2∗N−2) AND dato_X < q(2∗N−1) then
45 dato_S <= dato_sat1 ;
46 else
47 dato_S <= dato_pen0;
48 end i f ;
49 end i f ;
50 end process ;
51 end complicado;

Listing 4.4 VHDL code for a comparator implementing a PWL function based on saturated
function series

The blocks described above can be used to implement the chaotic oscillator based
on saturated function series. The comparator will augment the number of ports in a
proportional fashion as the number of scrolls increase, as mentioned above.

As shown in [25], a mathematical model can be solved by applying different
numerical methods. When using the Forward Euler one, the discretized equations
for the chaos generator based on saturated function series are given by (4.32), where
initial conditions are required and which can be set using multiplexers [25, 33].
In this case, one needs to control a loop for performing the iterations, as shown by

Fig. 4.12 Block description of (4.32), showing the state variables x, y and z
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Fig. 4.12.Where the chaotic oscillator unit embeds the hardware realization of (4.32),
in which one can identify the required blocks for implementing the chaos generator
using FPGAs. Sign plus requires and which is an adder, minus a subtractor, and
those state variables multiplied by the step size h, require a multiplier, also d1 is
multiplying the PWL function that can be implemented using comparators.

x1 = x0 + hy0
y1 = y0 + hz0
z1 = z0 + h(−ax − by − cz + d1f (x; q))

(4.32)

Equation (4.32) can be described by VHDL code, while initial conditions are
included using a multiplexer and clock control that allow processing x0, y0 and z0
just to begin the iterations.

4.4 VHDL Code Generation

VHDL code for chaos generators can be automatically generated as described below.
The PWL functions can be implemented by comparator blocks that increase in a sys-
tematic way as a function of the number of scrolls being generated. For instance,
again considering the chaotic oscillator based on the PWL function for saturated
series, it has four coefficients a, b, c, and d1, and according to the number of scrolls,
one knows the number of break-point and saturation levels. Using Python, the fol-
lowing pseudocode performs the automatic synthesis of chaos generators based on
saturated function series as PWL function. As one sees, the input parameters are the
four coefficients of the dynamical system, and then the PWL function requires the
number of scrolls, break-points qi and saturation levels ki. Using these values one can
compute the slopesmi of the PWL function (see Fig. 4.7). The for cycle is simulating
the dynamical system with a step size (step) estimated from the evaluation of the
eigenvalues.

1 Enter data (Coefficients, Scrolls, Breakponits, Saturation Level)
2 for(i = 0 to simulation time)
3 x(after) = x+step f(x)
4 y(after) = y+step f(y)
5 z(after) = z+step f(z, Scrolls, Breakpoints, Sturation Level)
6 end for
7 print(graphics)

Listing 4.5 Pseudocode for the automatic synthesis of chaos generators based on the saturated
function series as PWL function

Using Python one can verify that using these values, the dynamical system con-
sisting of the three state variables x, y, and z, generate chaotic behavior. It can be
observed plotting the data between two state variables, e.g., x–y to observe an attrac-
tor. After this, one can provide data in binary format and assign the corresponding
binarywords to the blocks:multiplier, adder, subtractor, comparator, andmultiplexer.
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Table 4.2 PWL description for generating symmetric scrolls

Scrolls Saturation level Break-point

2 −1, 1 −0.0165, 0.0165

3 −2, 0, 2 −1.0165, −0.9835, 0.9835, 1.0165

5 −4, −2, 0, 2, 4 −3.0165, −2.9825, −1.0165, −0.9835, 0.9835, 1.0165, 2.9835,
3.0165

6 −5, −3, −1, 1, 3, 5 −4.0165, −3.9835, −2.0165, −1.9835, −0.0165, 0.0165, 1.9835,
2.0165, 3.9835, 4.0165

Table 4.3 PWL description for generating nonsymmetric scrolls

Scrolls Saturation level Break-point

2 −1, 2 −0.0165, 0.0165

3 −1.5, 0, 1.7 −1.0165, −0.9835, 0.9835, 1.0165

5 −5.1, −2.03, 0, 2, 4.96 −3.0165, −2.9825, −1.0165, −0.9835, 0.9835, 1.0165,
2.9835, 3.0165

6 −6.07, −3, −1.03, 1.05, 3,
5.95

−4.0165, −3.9835, −2.0165, −1.9835, −0.0165, 0.0165,
1.9835, 2.0165, 3.9835, 4.0165

The identification of such blocks is done from the discretized equations. For exam-
ple: from (4.32), signal x1 requires a multiplier to evaluate hy0 and an adder to sum
that with x0. Signal y1 also requires a multiplier and an adder. However, signal z1
requires 5 multipliers, 3 adders, 1 subtractor, and a comparator to implement the
PWL function.

Tables4.2 and 4.3 list the values for the VHDL code generation of chaos genera-
tors having from 2 to 6-scrolls, with symmetric and nonsymmetric PWL functions,
respectively. It is appreciated that the break-points and saturated levels are nonsym-
metric in the second case, so that the computed slopes change in symmetric and
nonsymmetric PWL functions.

The VHDL code can be automatically generated by identifying the way the PWL
function is implemented. After an analysis of the chaos generators based on the
PWL functions consisting on saturated functions series, sawtooth and negative slopes
(Chua’s circuit), described at Sect. 4.1, one can conclude that the hardware increases
in a proportional fashion with respect to the number of scrolls. For example, from
the chaotic oscillator based on saturated PWL functions, for generating 2-scrolls
the required hardware are 12 multipliers, 8 adders, and 2 subtractors. Each addi-
tional scroll requires 5 multipliers, 3 adders and 1 subtractor, so that this can be
expressed by (4.33), where n indicates the number of scrolls. On the other hand, the
PWL function can be augmented from (4.34), which is for generating from 2-scrolls
to n.

Multipliers = 5(n − 2) + 12

Adders = 3(n − 2) + 8

Subtractors = n

(4.33)
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if (x1 > ql and x1 < ql+1)

f0 = kp
while l < (2n − 2)

if (x1 >= ql+1 and x1 <= ql+2)

f1 = ((kp+1 − kp)/(ql+2 − ql+1))

f2 = (x1 − ((ql+1 + ql+2)/2)) + ((kp+1 + kp)/2)

f0 = f1f2
else − if (x1 > ql+2 and x1 < ql+3)

f0 = kp+1

l = l + 2

p = p + 1

(4.34)

Simulation results for the symmetric attractors are shown in Figs. 4.13, 4.14, 4.15
and 4.16, and for nonsymmetric attractors they are shown in Figs. 4.17, 4.18, 4.19 and
4.20. FPGA realizations of these chaos generators lead us to the experimental results
shown in Figs. 4.21, 4.22, 4.23 and 4.24. On the other hand, as the dynamical system
has 3 state variables, 3 Lyapunov exponents can be computed from which one must
be maximum (MLE) to guarantee chaotic regime [32]. Table4.4 lists the computed
MLEs for generating 2, 3, 5, and 6-scrolls with symmetric and nonsymmetric PWL
functions, where it can be appreciated what is well known: MLE increases as the
number of scrolls being augmented. In addition, better MLE values can be obtained
when optimizing it as already shown in [32, 34].

4.5 Bifurcation Diagrams

A dynamical system can change its behavior as its parameters vary, such changes
can be appreciated by evaluating the bifurcation diagram [35, 36]. Considering again
the chaos generator based on the saturated PWL function, varying the coefficients
a, b, c, and d1 leads to compute better values forMLE. Table4.5 shows the computed
coefficients and their associated values for MLE, entropy and fractal dimension, the
initial conditions to the three state variables x, y, and z, were set to [0.1, 0, 0].

For the chaos generators listed in Table4.5, the bifurcation diagrams are generated
[34], as shown in Figs. 4.25, 4.26 and 4.27, where c was selected as bifurcation
parameter because it is the more sensitive one.

4.6 Multi-scroll Chaotic Attractors with High MLE
and Entropy

In the recent literature one can find works discussing the modeling, simulation, and
circuit realization of different kinds of continuous-time multi-scroll chaotic attrac-
tors. However, very few works describe the experimental realization of attractors
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Fig. 4.13 Simulation results
for the symmetric and
2-scrolls attractor. a PWL
function. b State variable x.
c Portrait x–y

having high maximum Lyapunov exponent (MLE) and high entropy, which are
desirable characteristics to guarantee better chaotic unpredictability. For instance,
two chaotic oscillators having the same MLE values can behave in a very differ-
ent way, e.g., showing different entropy values. That way, in this section we list
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Fig. 4.14 Simulation results
for the symmetric and
3-scrolls attractor. a PWL
function. b State variable x.
c Portrait x–y
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Fig. 4.15 Simulation results
for the symmetric and
5-scrolls attractor. a PWL
function. b State variable x.
c Portrait x–y

some values of an optimized multi-scroll chaotic oscillator with both high MLE
and entropy [37]. The optimization algorithm proposed in [32], is applied herein.
It is based on the evolutionary algorithm known as nondominated sorting genetic
algorithm (NSGA-II) [38], and it optimizes two characteristics, then: a bi-objective
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Fig. 4.16 Simulation results for the symmetric and 6-scrolls attractor. a PWL function. b State
variable x. c Portrait x–y
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Fig. 4.17 Simulation results
for the nonsymmetric and
2-scrolls attractor. a PWL
function. b State variable x.
c Portrait x–y
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Fig. 4.18 Simulation results
for the nonsymmetric and
3-scrolls attractor. a PWL
function. b State variable x.
c Portrait x–y
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Fig. 4.19 Simulation results
for the nonsymmetric and
5-scrolls attractor. a PWL
function. b State variable x.
c Portrait x–y
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Fig. 4.20 Simulation results
for the nonsymmetric and
6-scrolls attractor. a PWL
function. b State variable x.
c Portrait x–y
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Fig. 4.21 Experimental results for generating 2-scrolls with symmetric and nonsymmetric PWL
functions. a Symmetric. b Nonsymmetric

optimization problem is encoded: (i) to maximize MLE, and (ii) to minimize the
variability in the oscillator’s phase-space transitions or the trajectories.

4.6.1 Lyapunov Exponents

Lyapunov exponents are asymptotic measures that characterize the average rate of
growth (or shrinking) of small perturbations to the solutions of a dynamical system.
They provide quantitative measures of response sensitivity of a dynamical system to
small changes in initial conditions. In a continuous time dynamical system modeled
by ordinary differential equations, the number of Lyapunov exponents is equal to the
number of states variables in the dynamical system, so that at least three state variables
are required to generate chaotic behavior. This section verifies what is already known
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Fig. 4.22 Experimental results for generating 3-scrolls with symmetric and nonsymmetric PWL
functions. a Symmetric. b Nonsymmetric

that by increasing the number of scrolls both the MLE and its associated entropy
increase in a similar proportion [37].

Lets us consider an n-dimensional dynamical system:

ẋ = f (x), x ∈ R
n, t > 0, x(0) = x0 (4.35)

where x and f are n-dimensional vector fields. To determine the n-Lyapunov expo-
nents of the system one have to find the long-term evolution of small perturbations
to a trajectory, which are determined by the variational equation of (4.35),

ẏ = ∂f

∂x

(
x(t)

)
y = J

(
x(t)

)
y (4.36)

where J is the n × n Jacobian matrix of f . A solution to (4.36) with a given initial
perturbation y(0) can be written as
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Fig. 4.23 Experimental results for generating 5-scrolls with symmetric and nonsymmetric PWL
functions. a Symmetric. b Nonsymmetric

y(t) = Y(t)y(0) (4.37)

with Y(t) as the fundamental solution satisfying

Ẏ = J
(
x(t)

)
Y , Y(0) = In (4.38)

Here In denotes the n × n identity matrix. If one considers the evolution of an
infinitesimal n-parallelepiped [p1(t), . . . , pn(t)] with the axis pi(t) = Y(t)pi(0) for
i = 1, . . . , n, where pi(0) denotes an orthogonal basis of Rn. The ith Lyapunov
exponent, which measures the long-time sensitivity of the flow x(t) with respect to
the initial data x(0) at the direction pi(t), is defined by the expansion rate of the length
of the ith axis pi(t) and is given by

λi = lim
t→∞

1

t
ln

∥
∥pi(t)

∥
∥ (4.39)
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Fig. 4.24 Experimental results for generating 6-scrolls with symmetric and nonsymmetric PWL
functions. a Symmetric. b Nonsymmetric

In summary, the Lyapunov exponents can be computed as follows [20, 32, 39,
40]:

1. Initial conditions of the system and the variational system are set to X0 and In×n,
respectively.

2. The systems are integrated by several steps until an orthonormalization period
TO is reached. The integration of the variational system Y = [y1, y2, y3] depends
on the specific Jacobian that the original system X is using in the current step.

3. The variational system is orthonormalized using the standard Gram–Schmidt
method [41], and the logarithm of the norm of each Lyapunov vector contained
in Y is obtained and accumulated in time.

4. The next integration is carried out using the new orthonormalized vectors as
initial conditions. This process is repeated until the full integration period T is
reached.

5. The Lyapunov exponents are obtained by
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Fig. 4.25 Bifurcation diagrams and portraits for generating 10-scrolls with different MLE from
Table4.5. a MLE = 0.165950. b MLE = 0.165950. c MLE = 0.775137. d MLE = 0.775137.
e MLE = 0.776849. f MLE = 0.776849

λi ≈ 1
T

T∑

j=TO

ln
∥
∥yi

∥
∥

The time-step selection was set as in [40], using the minimum absolute value of
all the eigenvalues of the system λmin, and ψ was chosen well above the sample
theorem as 50.
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Fig. 4.26 Bifurcation diagrams and portraits for generating 11-scrolls with different MLE from
Table4.5. a MLE = 0.157250. b MLE = 0.157250. c MLE = 0.772160. d MLE = 0.772160.
e MLE = 0.785336. f MLE = 0.785336

tstep = 1

λminψ

The orthogonalization period TOwas chosen about 50 tstep. This procedure is used
herein as in [32] to optimize the MLE.
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(a) (b)

(c) (d)

Fig. 4.27 Bifurcation diagrams and portraits for generating 18 and 20-scrolls. aMLE= 0.1813334.
bMLE = 0.1813334. c MLE = 0.1813339. d MLE = 0.1813339

Table 4.4 Computed MLE values

Scrolls MLE for symmetric PWL MLE for nonsymmetric PWL

2 0.085481 0.087523

3 0.088219 0.080768

5 0.106306 0.106320

6 0.111062 0.111581

4.6.2 Evaluation of Entropy

For chaotic oscillators, the entropy is an alternative choice to Lyapunov exponents
because it reveals aspects of the underlying dynamical system (i.e., it quantifies the
stretching and the folding aspects at the same time). The entropy rates of growth
are an interesting parameter to quantify disorder in chaotic oscillators. In the same
direction, as chaotic attractors can be recognized by visual inspection in their phase-
space portraits, a numerical quantification of chaos is performed by optimizingMLE.
The entropy has also some relationships of interest as for the sum of Lyapunov
exponents [39, 42], which measure the instability of nearby trajectories. The entropy
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Table 4.5 Coefficient values and their associated MLE, entropy and fractal dimension for gener-
ating 10, 11, 18, and 20-scrolls

Scrolls PWL
segments

Coefficient
(a, b, c, d1)

MLE Entropy Fractal
dimension

10 19 0.7000,
0.7000,
0.7000,
0.7000

0.16595 2.6869 2.1919

1.0000,
0.5160,
0.1190,
1.0000

0.775137 2.8490 2.8743

1.0000,
0.5130,
0.1180,
1.0000

0.776849 2.8628 2.8755

11 21 0.7000,
0.7000,
0.7000,
0.7000

0.15725 2.7460 2.1832

1.0000,
0.4820,
0.1100,
1.0000

0.77216 2.9148 2.8750

1.0000,
0.4850,
0.0930,
1.0000

0.785336 2.9950 2.8968

18 35 0.7000,
0.7000,
0.7000,
0.7000

0.1813334 2.9003 2.20873

20 39 0.7000,
0.7000,
0.7000,
0.7000

0.1813339 3.0155 2.90035

is computed herein by applying the algorithm presented by Moddemeijer, which is
online available at http://www.cs.rug.nl/~rudy/matlab/.

Some values (cases) of the coefficients a, b, c, and d1, associated to the optimized
MLEs for different number of scrolls, and their corresponding entropies are listed in
Tables4.6, 4.7 and 4.8. These tables clearly show that by increasing the number of
scrolls, when the chaotic oscillator is optimized both MLE and the entropy increase.

http://www.cs.rug.nl/~rudy/matlab/
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Table 4.6 Optimized MLE and its associated entropy for generating 2-scrolls

Case a b c d1 MLE Simulated
entropy

1 1.0000 1.0000 0.4997 1.0000 0.3761 1.4742

2 1.0000 0.7884 0.6435 0.6665 0.3713 1.0709

3 0.8661 1.0000 0.3934 0.9903 0.3607 1.15806

4 0.7746 0.6588 0.5846 0.4931 0.3460 1.1133

5 1.0000 0.7000 0.6780 0.1069 0.3437 0.7281

6 1.0000 0.7000 0.7000 0.2542 0.3425 1.16843

7 0.7743 0.6716 0.5892 1.8469 0.3391 1.5712

8 0.9248 0.7491 0.6686 0.6814 0.3385 1.1628

9 0.7178 0.6593 0.5546 0.2247 0.3376 0.2925

10 0.7060 0.6451 0.5523 0.2181 0.3320 0.2765

11 0.7060 0.7000 0.7000 0.7000 0.2658 1.3312

Table 4.7 Optimized MLE and its associated entropy for generating 5-scrolls

Case a b c d MLE Entropy
simulated

Entropy
experi-
ment

1 1.0000 0.7250 0.2250 1.0000 0.6919 2.2481 2.0131

2 0.9880 0.7140 0.2050 1.0000 0.6914 2.2962 2.1472

3 0.9890 0.7300 0.2070 1.0000 0.6908 2.2708 2.0779

4 0.9910 0.6810 0.2300 0.9810 0.6814 2.2906 2.1175

5 0.9880 0.7480 0.1890 1.0000 0.6663 1.3800 1.9619

6 0.9840 0.6810 0.2270 0.9830 0.6651 2.3365 2.0757

7 0.9890 0.6810 0.2040 0.9790 0.6645 2.1736 2.3032

8 1.0000 0.7840 0.2000 1.0000 0.6533 2.2628 2.3024

9 0.9800 0.7960 0.1570 1.0000 0.6523 1.3214 2.1260

10 1.0000 0.7330 0.2050 1.0000 0.6471 2.2560 2.0287

11 0.7000 0.7000 0.7000 0.7000 0.2840 2.2352 1.9403

4.7 Generating a 50-Scrolls Chaotic Attractor at 66 MHz

In electronics, the challenge in implementing chaotic oscillators is yet generating as
many scrolls as the device capabilities allow it. For instance, experiments realized
during the past four years showed the generation of 12-scrolls using commercially
available amplifiers and 5-scrolls with an integrated circuit fabricated with technol-
ogy of 0.5µm [43]. The generation of these very few number of scrolls is due to
the limitations of the electronic devices, like voltage range and frequency response.
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Table 4.8 Optimized MLE and its associated entropy for generating 10-scrolls

Case a b c d MLE Entropy
simulated

Entropy
experi-
ment

1 1.0000 0.5160 0.1190 1.0000 0.8853 2.8882 2.6302

2 1.0000 0.5054 0.1140 1.0000 0.8826 2.9032 2.6152

3 1.0000 0.5130 0.1180 1.0000 0.8792 2.8863 2.6193

4 1.0000 0.5410 0.1060 1.0000 0.8712 2.8874 2.5166

5 1.0000 0.5930 0.0840 1.0000 0.8545 2.8664 2.4594

6 1.0000 0.5160 0.1580 1.0000 0.8438 2.9273 2.6874

7 1.0000 0.6430 0.0975 1.0000 0.8314 2.8957 2.4891

8 1.0000 0.7000 0.1160 1.0000 0.7825 2.8788 2.6890

9 1.0000 0.7995 0.2127 0.9831 0.7249 2.6036 1.8740

10 1.0000 0.7200 0.4195 1.0000 0.6177 2.8748 2.6213

11 0.7000 0.7000 0.7000 0.7000 0.3026 2.8956 2.6157

Table 4.9 28-bits computer arithmetic to generate from 10 to 50 scrolls

Scrolls Format Sign Integer part Fractional part

10 5.23 0 0000 .00000000000000000000000

11 5.23 0 0000 .00000000000000000000000

20 6.22 0 00000 .0000000000000000000000

30 7.21 0 000000 .000000000000000000000

40 7.21 0 000000 .000000000000000000000

50 7.21 0 000000 .000000000000000000000

Besides, this section introduces the generation of 50-scrolls using FPGAs and work-
ing at 66MHz.

As mentioned before, the FPGA realization of a dynamical system begins from
the description of the discrete equations, where one can identify the required kind of
blocks to be described inVHDL, e.g.,multipliers, subtractors, comparators, registers,
and multiplexers. The VHDL blocks need computer arithmetic notation, which has
two fundamental principles: numeric representation and execution of algebraic oper-
ations [44]. Using fixed-point notation accelerates the processing speed and saves
FPGA resources. The representation is done depending on the number of scrolls to
be generated. For example, Table4.9 shows the numerical format for generating 10,
11, 20, 30, 40, and 50 scrolls, where 28 bits are used as word length.
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Fig. 4.28 FPGA realization of xn+1, yn+1 and zn+1

Figure4.28 shows the implementation of the three state variables, namely: xn+1,
yn+1 and zn+1. As one sees, the logic paths for xn+1 and yn+1 are shorter compared
to the one for zn+1. In this manner, the output for xn+1 and yn+1 are computed with
lower clock cycles.

To save hardware resources, multipliers are replaced by single constant multipli-
cation (SCM) blocks, which are implemented as already shown in [25]. The state
variables are controlled by a counter that generates an activation signal LDA every 8
clock cycles, as shown in Fig. 4.29. When LDA = 0, the multiplexers load the initial
conditions data for the state variables to perform the first iteration to evaluate the
equations. Afterwards, LDA = 1 and the data in the state variables are then feedback
to the multiplexers to continue evaluating until the number of steps is accomplished.
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Fig. 4.29 Implementation of a multi-scroll chaotic oscillator

Table 4.10 Generating 10-scrolls using the XC3S1000-5FT256 FPGA Spartan-3

Resources Available MLE = 0.16595 MLE = 0.775137 MLE = 0.776849

Slice registers 15,360 1,454 1,222 1,221

Occupied slices 7,680 3,344 1,990 1,992

4 input LUTs 15,360 6,129 3,483 3,487

Bonded IOBs 173 24 25 25

BUFGMUXs 8 1 1 1

To observe the generation of up to 50-scrolls in an oscilloscope, the XC3S1000-
5FT256 FPGA Spartan-3 from Xilinx, and the Cyclone IV GX FPGA DE2i-150
from Altera, were used herein. Table4.10 lists the used resources for generating
10-scrolls and by applying Forward Euler method for solving the dynamical system.
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Fig. 4.30 Experimental results (x–y portrait) for generating a 30, b 40, and c 50-scrolls attractors
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Table 4.11 Generating 20, 30, 40, and 50 scrolls using the Cyclone IV GX FPGA DE2i-150

Scrolls 20 30 40 50

Resources Available Used Used Used Used

Dedicated
logic registers

149,760 2,222 3,237 4,281 5,235

Total
combination
function

149,760 9,598 15,241 20,684 25,710

Total logic
elements

149,760 9,754 15,417 20,863 25,893

Total pins 508 25 25 25 25

Embedded
multiplier
9-bit elements

720 0 0 0 0

Total memory
bits

6,635,520 0 0 0 0

Fmax (MHz) 78.31 66.76 66.34 66.21

Figure4.30 shows the experimental generation of 30, 40, and 50 scrolls. As the
hardware resources increases, in these cases the Cyclone IV GX FPGA DE2i-150
from Altera, is used. Table4.11 lists the used resources for generating 20, 30, 40,
and 50-scrolls. As one sees, the frequency of operation goes down as the number
of scrolls increase, so that using the FPGA DE2i-150 from Altera, the frequency of
operation for generating 50-scrolls is a little higher than 66MHz.



Chapter 5
Artificial Neural Networks for Time Series
Prediction

5.1 Introduction

As mentioned in [45], modeling real-world systems plays a pivotal role in their
analysis and contributes to a better understanding of their behavior and performance.
On the one hand, it has been demonstrated that some diseases of the human body
present neurological and behavioral manifestations that can be modeled by chaotic
systems. On the other hand, artificial neural networks (ANNs) are powerful tools for
modeling and prediction. For instance, the authors in [46] introduced a competitive
cooperative coevolution method for training recurrent neural networks for chaotic
time-series prediction, [47] describes how to control chaos in a chaotic neural net-
work, [48] proposes the design and analysis of a novel chaotic diagonal recurrent
neural network, [49] detects the effect of autapse on coupled neuronal networks, and
[50] introduces the design of a feed-forward neuronal network. In this manner, and
as recently demonstrated in [51], this chapter shows the hardware implementation
of an ANN that is used for chaotic time-series prediction. The cases of study are
chaotic time series generated by FPGA-based chaos generators and the prediction is
performed for different chaotic signals whose unpredictability is quantified by eval-
uating their MLE; because the higher the MLE value the higher the unpredictability
of an encrypted signal [33, 52].

Reference [53] lists a survey for the fixation of hidden neurons in neural networks
for the past 20 years, highlighting the objective to minimize error, improve accu-
racy and stability. However, no one provided a general solution for implementing an
ANN yet, so that the following problems remain: selection of hidden neurons, train-
ing algorithm, and architecture. Hidden neurons influence the error on the nodes
to which their output is connected, and the accuracy of training is determined by
the architecture, number of hidden neurons in hidden layer, kind of activation func-
tion, inputs, and updating of weights. These problems are discussed herein taking
into account the ANN introduced in [45, 51], and 2 ones designed by applying the
geometric pyramid rule.

© Springer International Publishing Switzerland 2016
E. Tlelo-Cuautle et al., Engineering Applications of FPGAs,
DOI 10.1007/978-3-319-34115-6_5
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Section5.2 describes the generation of chaotic time series by realizing a chaotic
oscillator using an FPGA, and their analysis by evaluating their MLE. Section5.3
describes the design of an ANN, the activation functions, learning rules, updating of
weights, and training algorithms using MATLAB. Three ANN topologies are com-
pared to reproduce chaotic signals with different MLE values. The hardware realiza-
tion of the ANN is shown in Sect. 5.4, where the activation function is implemented
by polynomial and piecewise-linear (PWL) approaches. The FPGA is connected to
a personal computer by a serial interface to feed the ANN and experimental results
are shown and discussed.

5.2 Generating Chaotic Time Series Using FPGAs

A time series represents a measure of a physical variable xt registered at a time t, and
it is discrete. The observed data can be used to model or to predict future values to
determine the behavior of a time series, as shown in [54], where five sets of chaotic
time series data are analyzed. In this chapter, chaotic time series are generated by
FPGAs.Again, the chaotic oscillator based on saturated function series is used,which
is described by (5.1) [33], where x, y, and z are the state variables, and a, b, c and d1,
are real and positive coefficients. The PWL function consists of as many saturated
levels as the number of scrolls being generated.

ẋ = y

ẏ = z

ż = −ax − by − cz + d1f (x)

(5.1)

The pseudocode 1 solves (5.1) by forward Euler, where the discretized state vari-
ables are given in (5.2). To generate 2-scrolls, the initial conditions are set to xn, yn,
zn (x0 = y0 = z0 = 0.01), the coefficients a = b = c = d1 = 0.7,Δt = 0.01 the step
size, m = 60.606 the slope of the PWL function, k = ±1 for the saturated levels,
and α = ±0.0165 for the break-points.

For implementing the chaos generator into an FPGA, the numerical representa-
tion for the VHDL programming is listed in Table5.1 as fixed point using 26 bits.
The PWL function is included into (5.2), according to (5.3). Figure5.1 shows the
comparator block, where p01155 = m · d1 = 0.01155. Figure5.2 shows the hard-
ware realization to compute zn+1 in (5.2), and Fig. 5.3 to compute xn+1 and yn+1,
where one can appreciate the logic paths. For this dynamical system, a clock signal
clk is counted eight times to generate an activation signal LDA to observe the outputs,
mainly zn+1. The whole architecture of the chaotic oscillator is shown in Fig. 5.4. The
main blockOscillator is connected to three multiplexers, whose selection is through
signal P. Thus, when P = 0, the data at IC (initial conditions) for the state variables
are loaded. Afterwards, once LDA is activated (after 8 clock cycles), P = 1 and then
the multiplexers are activated to enable the iterations solving (5.2) [33].
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Table 5.1 Fixed point
notation using 26 bits

Sign Integer part Fractional part

0 000 0.1000000000000000000000

Fig. 5.1 Block diagram of
the comparator

Pseudocode 1. Solving (5.1) by applying the Forward Euler numerical method
1: function(xn+1, yn+1, zn+1)= two scrolls (xn, yn, zn)
2: xn+1 = xn + Δt(yn);
3: yn+1 = yn + Δt(zn);
4: if xn > α

5: zn+1=zn + Δt(−axn − byn − czn + d1k);
6: elseif xn >= −α & x0 <= α

7: zn+1=zn + Δt(−axn − byn − czn + d1m);
8: elseif xn < −α

9: zn+1=zn + Δt(−axn − byn − czn − d1k);
10: end
11: end

xn+1 = xn + Δtyn
yn+1 = yn + Δtzn

zn+1 = zn + Δt(−axn − byn − czn + d1f (xn))

(5.2)

zn+1 =
⎧
⎨

⎩

z + Δt(−ax − by − cz + d1k) if x < α

z + Δt(−ax − by − cz + d1m) if −α ≤ x ≤ α

z + Δt(−ax − by − cz − d1k) if x < −α

(5.3)

To increase the processing speed and to save hardware resources, the multipliers
are replaced by single constant multiplication (SCM) blocks [55, 56]. For example,
y = 71x when x = 012 needs the execution of six shifts x � 6 = 010000002, two
shifts x � 2 = 01002, and one shift x � 1 = 0102. Their sum is 010001102 = 7010,
and finally 7010 + x = 010001112 = 7110. The multiplications by the constants
a, b, c, d1 = 0.7 and Δt = 0.01 are then realized by SCMs, as shown in Fig. 5.5.
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Fig. 5.2 Block description to compute zn+1 from (5.2)

Fig. 5.3 Block description to compute xn+1 and yn+1

The chaotic oscillator was implemented using Quartus II to perform the FPGA
synthesis by VHDL within the Altera Cyclone IV GX FPGA DE2i-150. This FPGA
is biased at 12V, it offers 150k logic elements, a clock = 50MHz, 720 M9K blocks,
6480kbits of on-chip memory, and 360 18 × 18 multiplexers. As shown in the
previous chapter, the grade of unpredictability of a chaotic time series is associated
to the value of its MLE [33, 52]. That way, Table5.2 lists the computed MLE for
Fig. 5.6. Figures5.7 and 5.8 show the chaotic time series for MLE = 0.3761 and
MLE = 0.3425, respectively.
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Fig. 5.4 Block description of the chaotic oscillator

5.3 ANN Design Issues

An ANN is a set of elementary processing units called neurons or nodes whose
processing capability is stored in the connections by synaptic weights, and whose
adaptation depends on learning [57]. There are three kinds of neurons: input (allocate
input values), hidden (perform operations and consists of one or more layers), and
output ones (perform operations and compare the values with target or reference
ones). Figure5.9 shows the structure where the j neurons receive input signals xj,
and w represents the synaptic weights. b1 is the bias and f (.) denotes the activation
function that defines the output of the neuron [57]. The state of a neuron j is evaluated
by summing the weights, each synaptic weight multiplies each input and since in
a soma the inputs coming from the dendrites are added, one gets (5.4). w0j is the
excitation threshold, and if it is included at the input the internal state is described
by (5.5), with x0 = 1 as a dummy. The internal state is evaluated by (5.6).

Yinj = w0j +
n∑

i=1

xiwij (5.4)
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(a)

(b)

(c)

Fig. 5.5 SCMs multiplying by: a 0.0110, b 0.710, and c −0.710

Table 5.2 Three different MLE values for the chaotic oscillator described by (5.1)

Coefficients a, b, c, and d1 MLE

1.0000, 1.0000, 0.4997, 1.0000 0.3761

1.0000, 0.7000, 0.7000, 0.2542 0.3425

0.7000, 0.7000, 0.7000, 0.7000 0.2658

Yinj =
n∑

i=1

xijwij (5.5)
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(a) (b)

(c) (d)

Fig. 5.6 Chaotic time series with MLE = 0.2658. State variables a x, b y, c z, and d phase space
portrait x–y

uj =
n∑

i=1

xijwij + Bj (5.6)

Ifwi is positive, it is associated to an excitation and if it is negative, to an inhibition.
Were the threshold activation incorporated to theweights vector, the output activation
y is given by (5.7). f denotes the activation function, and the more used ones are
listed in Table5.3. The neuron needs a learning technique to adjust its parameters
during a training process. It can be supervised or unsupervised (self-organized). The
supervised one is more suited for discrete data. These and other issues are selected
heuristically according to the application.

y = f (u) (5.7)
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(a) (b)

(c)

(d)

Fig. 5.7 Chaotic time series with MLE = 0.3761. State variables a x, b y, c z, and d phase space
portrait x–y

5.3.1 ANN Topology Selection

Up to now, many recipes have been proposed to select the number of hidden layers
and neurons in an ANN. For instance, [53] lists a history, but still many researchers
apply the geometric pyramid rule [58]. In this chapter, three cases are reviewed to
select the ANN topology to be realized into an FPGA.

The first topology consists of three layers: one hidden layer, one output neuron
(m = 1), and four input neurons (n = 4). Then the number of hidden neurons is
h = √

m · n = 2. It also accomplishes the condition that n > h. Figure5.10 shows
this topology.

The second topology consists of four layers: two hidden layers, one output neuron
(m = 1), and eight input neurons (n = 8). Now, to determine the number of neurons
in the first (h1) and second (h2) hidden layers one should evaluate: h1 = m · r2 and
h2 = m · r, with r = 3

√ n
m . Figure5.11 shows the second topology.
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(a) (b)

(c) (d)

Fig. 5.8 Chaotic time series with MLE = 0.3425. State variables a x, b y, c z, and d phase space
portrait x–y

Table 5.3 Activation functions

Unitary step function φ(u) =
{
1 when u > 0

0 otherwise

Lineal function φ(u) = u

Sigmoid function φ(u) = a

1 + exp(−bu)

Hyperbolic tangent function φ(u) = eu − e−u

eu + e−u

The third topology is shown in Fig. 5.12, it applies an hyperbolic tangent as acti-
vation function, and at the output layer a lineal function. The weights for the input
neurons have associated a delay line to provide a finite dynamic response for the
time series data.



126 5 Artificial Neural Networks for Time Series Prediction

Fig. 5.9 Functional structure of a neuron

Fig. 5.10 ANN of three
layers

5.3.2 ANN Training

The batches and the incremental methods are applied to update the weights of
the neurons. Among the training algorithms available into MATLAB, the gradi-
ent descent with momentum (traingdm) is applied herein. The chaotic time series
data are generated as shown in Sect. 5.2. When using cheap oscilloscopes the data
should be filtered, in our case we applied the MATLAB FIR filter Savitzky-Golay,
e.g., y = sgolayfilt(x, k, f ), with k = 9 and f = 2051. Figure5.13 shows the filter
response for an experimental chaotic attractor.

Before training, the three ANN topologies shown in Sect. 5.3.1, the chaotic
time series data is normalized by MATLAB mapminmax within the range [−1, 1].
Figure5.14 shows the normalized values for the experimental data of the state vari-
able x of the chaotic oscillator described by (5.1).

The training is executed using three subsets of data. The first one (training) com-
putes the gradient, weights and bias updating. The second subset (validation) mon-
itors the error during the training. The third subset (test) adjusts the error during
the validation process. Such processes are executed into MATLAB dividerand using
the following values: Training Ratio (trainRatio) = 0.8, Validation Ratio

(valRatio) = 0.1, Test Ratio (testRatio) = 0.1.
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Fig. 5.11 ANN of four layers

Fig. 5.12 ANN taken from [45, 51]

Applying the gradient descent withmomentum, the training is performed bymod-
ifying the values of the learning rule LR and moment constant MC. The search range
is [0, 1]with steps of 0.1, and 30 experiments were performed for each possible com-
bination. The ANN performance is evaluated considering the training time, number
of epochs for weights updating and the minimum square error (MSE). Table5.4 lists
the ANN training results using experimental data. Figures5.15, 5.16 and 5.17 show
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Fig. 5.13 2-scrolls attractor
experimental data: a before
and, b after filtering
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the results to highlight that the ANNwith the lower number of epochs, training time,
and MSE is the one with six layers, and it will be used in the following experiments:

In the experimental results shown above, a delay lineΔ = 3was used. Now, using
the ANN with six layers, Fig. 5.18 shows results with different values for learning
rule (LR), moment constant (MC) and Δ, observing that the better performance is
when LR = 0.7 and MC = 0.9. Table5.5 lists the values for Δ providing low MSE.
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Fig. 5.14 Experimental data for the chaotic state variable x from (5.1)

Table 5.4 Average training results for the ANN topologies in Sect. 5.3.1
Three layers ANN Four layers ANN Six layers ANN

LR, MC Epoch Time MSE Epoch Time MSE Epoch Time MSE

1.0, 0.9 765.90 154.6087 0.000135 229.05 42.3749 0.02626 206.70 62.0141 0.01406

0.9, 0.8 651.55 131.6434 0.0262000 197.35 36.7112 0.01371 262.50 80.49775 0.001620

0.7, 0.9 854.05 173.2616 0.013180 462.10 96.92925 0.026185 158.50 48.5908 0.00058

0.7, 0.8 817.95 165.9386 0.000165 251.95 46.81955 0.02649 308.70 91.2538 0.000985

0.6, 0.9 1405.15 321.6969 0.000140 354.80 74.6030 0.02623 191.30 60.1968 0.00057

0.6, 0.7 915 185.2244 0.026260 233.10 49.1665 0.01387 285.65 88.0419 0.01381

0.5, 0.6 818.10 202.8650 0.065255 217.35 45.9118 0.02747 287.05 89.79685 0.065275

0.3, 0.9 2177.45 557.2294 0.026250 1325.45 281.012 0.05220 299.10 95.1104 0.01330

0.2, 0.9 2144.45 426.3107 0.143375 1265.75 341.2769 0.09127 330.85 99.0527 0.10432

0.2, 0.8 1425.15 262.0318 0.130285 1711.95 442.9853 0.05222 361.75 107.5476 0.013735

0.1, 0.7 2583.40 626.1664 0.169280 2586.3 680.9546 0.09123 484.65 141.421 0.07881

Table 5.5 Delay lines with better performance using LR = 0.7 and MC = 0.9

Δ MSE Time (s) Epoch

2 179.8 44.17 0.00199

3 169.7 42.13 0.00037

5 189 46.06 0.00146

7 193.1 48.39 0.0002515

8 194.2 47.64 0.0006578

9 193.3 40.89 0.0006578

5.3.3 Weights Updating by Batches and Incremental Methods

MATLAB allows performing the neuron weights updating of both batches and incre-
mental methods. The batch one uses the procedures adapt or train. The second, train
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Fig. 5.15 Average of the number of epochs

Fig. 5.16 Average of the training time

Fig. 5.17 Average of the MSE value

has access to more training algorithms. The incremental method uses adapt depend-
ing on the input format that determines the training algorithm, e.g., for an input
sequence, the ANN is trained in incremental mode, while for concurrent input vec-
tors the training is by batches.

To select the best weight updating method to perform a better time series pre-
diction, several experiments were executed. In the results using the batches method,
the ANN is trained with the same sequence as in the incremental training and the
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Fig. 5.18 Delay line variation for the six layers ANN

weights are updated after all inputs are applied (batches), i.e., the ANN is simulated
in incremental mode because the input is a sequence, but the weights are updated by
batches. Figure5.19 shows the training time for the ANN with six layers by apply-
ing the incremental and batches methods. Figure5.20 shows the MSE, and one can
appreciate that it is low for the training by batches. This is confirmed by predicting
a chaotic time series and performing experiments to quantify the training time, as
shown by Fig. 5.21.

5.3.4 On the Activation Function in the Last Layer
of the ANN

From the results shown in the previous subsections one can see that the batches
method is better than the incremental one when using the ANN with six layers. It
reproduces a chaotic time series much better with Δ = 3 with a low MSE. Table5.6
lists the average values for the gradient, error and epochs for different LR and MC
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(a)

(b)

Fig. 5.19 Training time for weight updating: a incremental and, b batches

valueswhen applying the gradient descent withmomentum algorithm. The activation
function is the hyperbolic tangent one for all neurons and h = 0.1.

Using a linear activation function in the neuron in the last layer helps to reduce
the number of epochs as shown in Fig. 5.22, where the experiments were realized
with five MC values and varying LR with steps (h) of 0.1. This is also appreciated in
Table5.7, where it is quite clear that the number of epochs is lower with respect to
Table5.6, just by changing the activation function in the last layer. This difference is
better appreciated in Fig. 5.23 with different values for LR and MC.

5.3.5 Time Series Prediction of Chaotic Signals
with Different MLE

The previous results were computed using a chaotic signal with a low value of its
maximum Lyapunov exponent (MLE) that is associated to a = b = c = d1 = 0.7 in
(5.1) and Table5.2, where three MLE values are listed. Table5.8 lists the averages
for the three ANN topologies shown in Sect. 5.3.1 when MLE = 0.3761.

Figure5.24 shows the results for 20 experiments when training the six layers ANN
with three chaotic signals and with different MLE value. As one can infer, the MLE
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(a)

(b)

Fig. 5.20 MSE for weight updating: a incremental and b batches

is correlated to the training time. In the majority of cases, also the MSE value is
correlated to the MLE value, as shown in Fig. 5.25.

5.4 FPGA-Based ANN for Time-Series Prediction
of Chaotic Signals

The six layers ANN showed better results for predicting chaotic time series with
different MLE value. In this manner, this section shows its FPGA realization using
the Altera Cyclone IV GX FPGA, DE2i-150.

5.4.1 FPGA Realization of the Hyperbolic Tangent
Activation Function

The hyperbolic tangent activation function has a sigmoid behavior that can be
approached by a polynomial function. Table5.9 lists the coefficient values of a poly-
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Fig. 5.21 Time series
prediction for the state
variable x with LR = 0.6,
MC = 0.9, and
a = b = c = d1 = 0.7 in
(5.1): a incremental and b
batches

(a)

(b)

nomial of order 8, 9, and10.As one sees inFig. 5.26, they cannot completely approach
this activation function because an error arises in the middle or at the extremes of
the function. In addition, looking at the coefficient values in Table5.9, the hard-
ware is expensive when using a lookup table. A better approximation is performed
using the PWL approach introduced in [59], which is approached by segments of
order 2, as shown in (5.8), where β and θ determine the slope and gain Hs1(z)
between −L ≤ z ≤ L. In this manner, the hyperbolic tangent is approached herein
by (5.9), where θ = 0.25, L = 2 and β = 1. Figure5.27 shows the comparison when
the hyperbolic tangent activation function is approached by polynomials or PWL
functions. The superiority of the PWL approach is highlighted and this activation
function is realized as shown by Fig. 5.28.
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Table 5.6 Average results when the activation function is hyperbolic tangent in all neurons and
h = 0.1

LR and
MC

Gradient
average

Error
average

Epochs
average

LR and
MC

Gradient
average

Error
average

Epochs
average

0.9, 0.8 0.002497 0.5 713.1 0.4, 0.9 0.008425 0.9 3895

0.9, 0.7 0.000916 0.4 662.1 0.4, 0.8 0.010550 0.3 1335.7

0.9, 0.6 0.004866 0.2 1183.1 0.4, 0.7 0.00221 0.3 735.3

0.8, 0.9 0.059100 0.3 646.4 0.4, 0.6 0.002332 0.2 695.7

0.8, 0.7 0.001235 0.4 623.6 0.3, 0.9 0.007762 0.9 7423.6

0.8, 0.6 0.0303799 0.1 673.9 0.3, 0.8 0.0106363 0.3 2268

0.7, 0.8 0.0085 0.5 8117 0.3, 0.7 0.0050 0.3 1483.7

0.7, 0.9 0.0060 0.3 1219 0.3, 0.6 0.0020 0.3 967

0.7, 0.6 0.0410 0.2 453.8 0.2, 0.9 0.0187 0.7 5363.2

0.6, 0.9 0.0085 0.7 1108 0.2, 0.8 0.0059 0.4 3178.9

0.6, 0.8 0.0072 0.4 409 0.2, 0.7 0.0051 0.4 2357.7

0.6, 0.7 0.0131 0.1 559.6 0.2, 0.6 0.0025 0.3 677.7

0.5, 0.9 0.0235 0.7 2713 0.1, 0.9 0.0293 0.8 12053

0.5, 0.8 0.0038 0.5 1283 0.1, 0.8 0.0163 0.7 9156.7

0.5, 0.7 0.0010 0.2 740.1 0.1, 0.7 0.000336 0.7 9636.8

Fig. 5.22 Iterations with a linear activation function in the last layer

Hs1(z) =
{
z(β − θz) for 0 ≤ z ≤ L
z(β + θz) −L ≤ z ≤ 0

(5.8)
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Table 5.7 Average results when the activation function is hyperbolic tangent in all neurons except
in the last layer, where the activation function is linear

LR and
MC

Gradient
average

Error
average

Epochs
average

LR and
MC

Gradient
average

Error
average

Epochs
average

0.1, 0.9 0.01522 0.7 667.09 0.5, 0.7 0.00350 0.6 259.9

0.1, 0.7 0.00449 0.8 886.36 0.5, 0.6 0.00150 0.8 408.8

0.1, 0.6 0.00562 0.6 407 0.6, 0.9 0.01100 0.8 198.4

0.2, 0.9 0.01929 0.8 511.18 0.6, 0.8 0.00332 0.6 277.2

0.2, 0.8 0.00408 0.9 446.6 0.6, 0.7 0.001090 0.8 350.4

0.2, 0.7 0.00461 0.7 373.44 0.7, 0.9 0.003008 0.9 176.5

0.3, 0.9 0.001795 0.8 238.3 0.7, 0.8 0.001421 0.9 381.7

0.3, 0.8 0.00297 0.5 315.1 0.7, 0.6 0.0063 0.4 349.7

0.3, 0.7 0.00711 0.5 346.3 0.8,0.9 0.0036493 0.9 168

0.3, 0.6 0.00288 0.6 357.1 0.8, 0.7 0.0019718 0.4 351

0.4, 0.9 0.02190 0.6 241.11 0.8, 0.6 2.70e+13 0.6 226.5

0.4, 0.8 0.01475 0.5 260.66 0.9, 0.7 0.0023375 0.4 297.4

0.4, 0.6 0.00630 0.5 205 0.9, 0.8 0.0144457 0.3 153.3

0.5, 0.9 0.02936 0.7 173.9 1, 0.9 0.0051539 0.9 202.6

0.5, 0.8 0.02967 0.5 221.7 1, 0.6 0.0082798 0.6 250.6

Fig. 5.23 Epochs using hyperbolic tangent and linear activation functions
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Table 5.8 Average results for three topologies and MLE = 0.3761 from Table5.2
Three layers ANN Four layers ANN Six layers ANN

LR, MC Epoch Time MSE Epoch Time MSE Epoch Time MSE

1, 0.9 730.80 175.411 0.00965 329.30 103.2976 0.009559 276.65 116.405 0.000365

0.9, 0.8 988.10 255.544 0.0001 417.85 126.0837 0.02849 230.80 95.9772 0.00046

0.7, 0.9 1049.8 261.082 0.019135 293 91.50 0.02875 252.20 105.040 0.00990

0.7, 0.8 1337.40 344.44 0.009564 486.85 147.222 0.04753 269.6 116.336 0.000365

0.6, 0.9 883.30 227.606 0.019075 287.05 86.7168 0.000685 388.50 162.36205 0.019195

0.6, 0.7 957.95 247.0831 0.009765 279.05 83.9329 0.028995 300.05 127.079 0.009785

0.5, 0.6 2082.65 586.613 0.04763 1738.7 528.907 0.028495 392.65 169.42 0.00971

0.3, 0.9 2729.85 964.27 0.05705 1469.7 537.826 0.056915 725.35 311.047 0.019105

0.2, 0.9 3247.80 899.055 0.0665956 1328.5 486.941 0.06651 446.6 193.0998 0.047875

0.1, 0.7 3788.65 1379.62 0.12350 3933.75 1466.625 0.07588 654.650 271.989 0.07618
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Fig. 5.24 Training time required for chaotic signals of different MLE value

Gs1(z) =
⎧
⎨

⎩

1 for L ≤ z
Hs1 for −L < z < L
−1 z ≤ −L

(5.9)

The FPGA realization of the whole ANN with six layers is described in the
following. The weights are stored in a matrix of the form,
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Fig. 5.25 MSE of the prediction of chaotic signals with different MLE value

Table 5.9 Polynomial coefficient of order n: axn + bxn−1, . . . , cx0

Order Polynomial coefficients

8 0, −0.00252285599708557, 0, 0.0388774573802948, 0, −0.236943364143372, 0,
0.968010038137436, 0

9 0.000489681959152222, 0, −0.00907894968986511, 0, 0.0678912699222565, 0,
−0.283973813056946, 0, 0.988280504941940, 0

10 0, 0.000489681959152222, 0, −0.00907894968986511, 0, 0.0678912699222565,
0, −0.283973813056946, 0, 0.988280504941940, 0

W =

⎡

⎢
⎢
⎣

w1,1 w1,2 ... w1,m

w2,1 w2,2 ... w2,m

wn,1 wn,2 ... wn,m

⎤

⎥
⎥
⎦

where m is the element of the input vector and n the neuron of the layer. The biases
are allocated in a same way. Table5.10 lists the weightsW and biases B associated to
the first layer of the ANN shown in Fig. 5.12. The output of each neuron is given by

L1,n = f (In1Wn,1 + In2Wn,2 + In3Wn,3 + Bn) (5.10)

where f () corresponds to the activation function of the neurons. The hardware real-
ization is shown in Fig. 5.29, where one can appreciate that the multiplications are
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Fig. 5.26 Hyperbolic tangent function approached by polynomials

Table 5.10 Weights and biases of the first layer

Weights Biases

m = 1 m = 2 m = 3

n = 1 −0.1020998955 −0.0973799229 −0.0926499367 0.0289199352

n = 2 0.2051999569 0.1905999184 0.1758999825 −0.0622000694

n = 3 0.0263199806 0.0239100456 0.0215098858 0.0624599457

n = 4 −0.1422998905 −0.1308000088 −0.1194000244 0.0477199554

performed by SCMs to increase the processing speed, as described in Sect. 5.2.
The biases were stored in variables with computer arithmetic of 4.22, as shown in
Table5.1.

Table5.11 shows the weightsW and biasesB for the second layer in Fig. 5.12. The
output of each neuron is given by (5.11), and Fig. 5.30 shows its hardware realization,
again the multipliers are implemented by SCMs.

L2,n = f (In1Wn,1 + In2Wn,2 + In3Wn,3 + In4Wn,4 + Bn) (5.11)
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Fig. 5.27 Approaching the sigmoid behavior by polynomials and PWL functions

Fig. 5.28 Hardware realization of the sigmoid from its PWL approach [59]

For the third layer, its output is given by the following equation, and Fig. 5.31
shows the hardware implementation.

L3,n = f (In1Wn,1 + In2Wn,2 + In3Wn,3 + In4Wn,4 +
In5Wn,5 + In6Wn,6 + In7Wn,7 + Bn) (5.12)
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Fig. 5.29 Hardware of the first layer in Fig. 5.12

Table 5.11 Weights and biases of the second layer
Weights Biases

m = 1 m = 2 m = 3 m = 4

n = 1 −1.6719999313 −0.4147000313 1.4600000381 0.2945001125 2.2769999504

n = 2 0.3118999004 −1.2760000229 −0.0129299164 −1.8589999676 −1.5179998875

n = 3 0.44810009 −1.7809998989 −1.2179999352 −0.6514000893 −0.7614998817

n = 4 −0.2053999901 0.203099966 −1.7460000515 1.4360001087 0.0007128716

n = 5 0.55189991 −1.114000082 1.7479999065 0.8046998978 0.7864000797

n = 6 −1.3550000191 0.8132998943 −0.7953000069 1.4330000877 −1.5250000954

n = 7 0.5044000149 −0.3478999138 2.1930000782 0.0106298923 2.2769999504

The output of the fourth layer is given by the following equation, and its imple-
mentation in Fig. 5.32.

L4,n = f (In1Wn,1 + In2Wn,2 + In3Wn,3 + In4Wn,4 + Bn) (5.13)

The fifth layer has an output given by the following equation, and its implemen-
tation by Fig. 5.33.

L5,n = f (In1Wn,1 + In2Wn,2 + In3Wn,3 + In4Wn,4 +
In5Wn,5 + In6Wn,6 + In7Wn,7 + In8Wn,8 + Bn) (5.14)
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Fig. 5.30 Hardware of the second layer in Fig. 5.12

Table 5.12 Weights and biases of the sixth layer
Weights Biases

m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 −0.0549499989 −0.0297698975 −1.2409999371 −0.299200058 0.0297698975 0.0297698975

Table5.12 shows the weights W and biases B for the sixth layer in Fig. 5.12. The
output of each neuron is given by (5.15), and Fig. 5.34 shows its hardware realization
using multipliers implemented by SCMs.

L6,n = f (In1Wn,1 + In2Wn,2 + In3Wn,3 + In4Wn,4 + Bn) (5.15)

The whole ANN of six layers is shown in Fig. 5.35, at the output of each neu-
ron, a register is located to avoid the delay through the logic path. The ANN is
communicated to a PC using serial communication and the data listed in Table5.13.

Figure5.36 shows the hardware for the reception of data, where the enabled reg-
isters by EOR are activated each time a byte is received. When 4 bytes are received,
LHA is activated and in the next clock cycle LPA is activated. This process is repeated
until three packages are received, afterwards the registers enabled through LGA are
activated, thus guaranteeing receiving data of three inputs at the same time. The
output of the block Blq: ANN is obtained after 10 clock cycles.
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Fig. 5.31 FPGA description of the third layer

Fig. 5.32 FPGA description of the fourth layer
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Fig. 5.33 FPGA description of the fifth layer

5.5 Serial Communication Protocol: PC-FPGA

Soft computing represents an emergent research area, in which ANNs are part of this
new computing field. ANNs process information and are organized based on the brain
behavior [60]. They can operate in parallel and their interconnection pattern defines
the architecture, training, learning, activation functions, and so on [61]. Extremely
important is the selection of the number of neurons because using few neurons may
lead to an under-fitting, so that the ANN may lack of resources to solve a problem.
On the other hand, using many neurons may cause over-fitting [58]. That way, this
is a challenge that is different for every problem at hand. Some authors recommend
using one hidden layer and few neurons to solve practical problems, but still such a
number depends on the complexity of the problem.
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Fig. 5.34 Hardware of the sixth layer in Fig. 5.12

Fig. 5.35 Hardware realization of the ANN in Fig. 5.12
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Table 5.13 Data: Altera
Cyclone IV GX FPGA
DE2i-150

Component Data

Oscillator clock input 50MHz

Baude rate 115200

Parity check bit None

Data bits 8

Stop bits 1

Flow control (CTS/RTS) ON

Fig. 5.36 Hardware for the reception of data to the ANN of six layers

For instance, the ANN shown in Fig. 5.35 has 7 × 4 × 8 × 5 hidden layers. The
input layer and hidden ones the hyperbolic tangent function is used for activation
of the neurons. The last layer uses a linear activation function to reduce computing
time. In the first layer, a TDL (tapped delay line) is placed so that the input signal
(state variable x from the time series generated by the chaotic oscillator) pass through
k − 1 delays (with d = 3), as shown in Fig. 5.37.

As shown before, the hyperbolic tangent function is better if it is implemented by
PWL approach [62]. With θ = 0.25, L = 2 and β = 1, its block diagram is shown
in Fig. 5.38.

Once the ANN is implemented as shown in Fig. 5.35, it can be communicated to a
personal computer (PC) using the serial communication protocol [63]. This kind of
communication involves the transmission of one bit at a time, where the total number
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Fig. 5.37 TDL associated to one neuron

of bits transmitted by second is named baud rate. From the data, each byte is divided
into 8 bits and one by one is transmitted, which control is performed with other

Fig. 5.38 Hardware implementation of the hyperbolic tangent function
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Fig. 5.39 Distribution of the inputs of the ANN

(a)

(b)

Fig. 5.40 Shift registers: a serial-input/parallel-output, b parallel-input/serial-output

bits: beginning bits, parity bits (to detect errors during the transmission), and stop
bits (indicating the end of transmission). Since just one transmitter and one receptor
module are needed, serial communication is a simple way to connect an FPGA to a
PC.

The ANN has three inputs, each one with a word length of 26 bits, so that 6 bits
are concatenated as shown in Fig. 5.39. That way, each input will be updated to have
a length of 32 bits; thus for the three inputs it is necessary to send 12 packages of 8
bits each one.

Due to its capacity of temporal storage and data shift by flip-flops, the block
in charge of processing the received data will consist of shift registers with serial-
input/parallel-output and other ones with parallel-input/serial-output, as shown in
Fig. 5.40.

Figure5.36 shows the block used to data reception, where the registers enabled
by EOR will be activated each time a package is received. When four packages are
received, the register enabled by LHA will be activated, in the next clock cycle LPA
will be activated, and this process continues until 12 packages (the three inputs)
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Fig. 5.41 Serial communication between the FPGA and PC

Fig. 5.42 States machine for controlling the serial communication protocol

are received. Afterwards, the registers enabled by LGA will be activated, with this
procedure one ensures receiving the data for the three inputs in the ANN at the same
time. The output of the block Blq:ANN will be obtained after 10 clock cycles.

The block diagram sketching the transmission–reception for the serial communi-
cation between the FPGA and PC is shown in Fig. 5.41. As one sees, at the output of
the block ANN-Rx-Tx a register is located that will be enabled after 10 clock cycles,
which are required by the ANN. This data will be concatenated with 6 bits (to have
a word of 32 bits, as shown in Fig. 5.39), so that four packages of 8 bits are created,
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Table 5.14 FPGA used resources for the ANN of six layers

Resources Available Used Percentage (%)

Logic elements 146760 38428 26

Combinatorial
functions

146760 38191 26

Dedicated logic
registers

149760 1127 <1

Pins 508 34 7

9 bits mutipliers 720 196 27

Fmax 26.32MHz

Fig. 5.43 Chaotic time series prediction using ANNs

and which will be selected by a multiplexer when they are transmitted. Figure5.42
shows the states machine to control the whole system from Fig. 5.41.

Theutilized resources for theFPGArealization of theANNare listed inTable5.14.
As one can see in Fig. 5.38, one multiplier is required while another can be imple-
mented by an SMC. This reduces the maximum operating frequency (FMax) of the
ANN, and then, taking as reference the FPGAclock, onemust implement a frequency
divider to obtain the required clock frequency of the ANN blocks. In this experiment
MATLABTM is in charge of the transmission and reception of data. The results are
shown in Fig. 5.43, where one can observe an error that is due to the length of the
digital word, which was selected from computer arithmetic. The error in this case
increases during the negative transitions.



Chapter 6
Random Number Generators

6.1 Generating Pseudorandom Binary Sequences

From the logistic map equation:

yn+1 = 1 − ay2n , (6.1)

with 0 < a ≤ 2. A binary sequence can be generated taking the threshold at 0:

bn+1 =
{
0 if yn+1 ≤ 0,

1 if yn+1 > 0,
(6.2)

where yn+1 is calculated with (6.1). This is a discrete system. Thus at every new
value of yn+1 a new binary number bn+1, with 0 or 1 values, is generated. All the
other chaotic systems that will be shown in Sect. 6.6 are continuous systems, and
the binary sequence is taken by sampling the continuous signal, then it is necessary
to calculate the sampling frequency, and also it will be necessary to calculate the
threshold value (it is equal to zero in (6.2)).

The produced sequence is said to be “pseudo-random” because exactly the same
sequence can be reproduced using the same initial conditions. In (6.2), the initial
condition is a value for y0. Truly random sequences, where it is impossible to generate
the same sequence, is available in processes as playing a roulette, or throwing many
times a fair coin.

6.2 Numerical Method for Solving a Chaotic Dynamical
System

The Lorenz dynamical system and the Rossler one are modeled by three first order
and ordinary differential equations (ODE). Also Chua’s chaotic oscillator and the
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one based on saturated function series are modeled by systems of three first order
ODEs, but also the oscillators are controlled by a function. That function consists
of negative slopes in the case of Chua’s chaotic oscillator, and of series of saturated
functions for the other example that will be given in Sect. 6.6.

The point here is that it is necessary to use a numerical method to solve those
chaotic systems to obtain the signals associated to the state variables.

Let an ODE of a single variable be defined as

d f

dx
= ẋ = f (x, a), (6.3)

where f function depends on the independent state variable x and, possibly several
constants represented by vector a. The simplest method to obtain x in (6.3) is the
Euler method that is given by

xi+1 = xi + Δt f (x, a), (6.4)

which can be seen as the finite difference approximation of the derivative

f (x, a) = xi+1 − xi
Δt

.

Euler integration method has an error proportional to (Δt)2 but it is the simplest
method to implement in hardware or in software, with the consideration that needs a
very small integration time. For all the simulations in this chapter, Δt = 0.001s was
used to guarantee the stability of the numerical method, as discussed in Chap. 4.

6.3 Double-Scroll and Multi-scroll Chaos Generators

Chua’s chaotic oscillator and the one based on a series of saturated functions, will
be defined in this section. It will be defined also how to generate several scrolls with
these kinds of oscillators.

6.3.1 Chua’s Chaotic Oscillator

The ODEs that model this chaotic oscillator [32, 40, 64] are

ẋ = α[y − x − g(x)],
ẏ = x − y + z,

ż = βy,

(6.5)

http://dx.doi.org/10.1007/978-3-319-34115-6_4
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where α and β are two different constants, and g(x) is the PWL function defined as

g(x) = m2n−1x + 1

2

2n−1∑

i=k

(mi−1 − mi )(|x − bi | − |x − bi |), (6.6)

where mi are slopes, that must be with negative values, and bi break-point values.
The values given to function g control the number of generated scrolls In order to
generate an even number (2n) of scrolls, k takes values k = 1, 2, 3, . . . ; to generate
an odd number (2n + 1) of scrolls, k takes values k = 2, 3, 4, . . . .

The minimum number of scrolls is two, then 2n = 2, n = 1, and k = 1. In this
manner, (6.6) becomes

g(x) = m1x + 1

2
(m0 − m1)(|x + b1| − |x − b1|).

The graph of this example is shown in Fig. 6.1a for values m0 = −3.036, m1 =
−0.276, and b1 = 0.1. For generating 3-scrolls, 2n + 1 = 3 then n = 1, and k will
take the values 2, and 3, and function g(x) will be

g(x) = m1x + 1

2
(m1 −m2)(|x +b2|− |x −b2|)+ 1

2
(m2 −m3)(|x +b3|− |x −b3|).

The graph is shown in Fig. 6.1b for values m2 = −3.036, m1 = m3 = −0.276,
b1 = 0.8, and b1 = 1.37.

6.3.2 Saturated Function Series-Based Chaotic Oscillator

This chaotic oscillator can generate, as well as the Chua’s one, more than 2-scrolls.
It is described by the system of differential equations [31, 32, 65]

ẋ = y

ẏ = z

ż = −ax − by − cz + d1 f (x;m)

(6.7)

where a, b, c, and d1 are positive constants that can get values in the interval [0, 1].
The dynamical system is controlled by the PWL approximation, e.g., series of a
saturated function f .

In the following, we describe in detail how the saturated function f in (6.7) is
obtained. Let f0 be the saturated function
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Fig. 6.1 Graphs from (6.6)
for generating 2-scrolls in a,
and 3-scrolls in b. For both
the graphs the following
values were taken: b1 = 0.8,
b1 = 1.37, m2 of m3 equal to
−3.036, and m1 = −0.276
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f0(x;m) =

⎧
⎪⎨

⎪⎩

1, if x > m
x
m , if |x | ≤ m

−1, if x < −m,

(6.8)

where 1/m is the slope of the middle segment and m > 0, contrary to the negative
slopes in Chua’s oscillator; the upper radial { f0(x;m) = 1 |x > m}, and the lower
radial { f0(x;m) = −1 |x < −m} are called saturated plateaus, and the segment
{ f0(x;m) = x/m | |x | ≤ m} between the two saturated plateaus is called saturated
slope.

Let us now consider the saturated functions fh and f−h defined as:

fh(x;m, h) =

⎧
⎪⎨

⎪⎩

2, if x > h + m
x−h
m + 1, if |x − h| ≤ m

0, if x < h − m,

(6.9)
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and

f−h(x;m,−h) =

⎧
⎪⎨

⎪⎩

0, if x > h + m
x−h
m − 1, if |x − h| ≤ m

−2, if x < h − m,

(6.10)

where h is called the saturated delay time and h > m. Therefore, a saturated function
series for a chaotic oscillator with s scrolls is defined as the function

f (x;m) =
s−2∑

i=0

f2i−s+2(x;m, 2i − s + 2) (6.11)

where s > 2.
For example, using f = f0 in (6.7), a 2-scrolls chaotic oscillator can be generated;

the saturated function series for a 3-scrolls oscillator, s = 3, is generated from
i = {0, 1} in the sum in (6.11), then f (x;m) = f−1(x;m,−1)+ f1(x;m, 1), and for
a 4-scrolls attractor: s = 4, i = {0, 1, 2} in (6.11), thus: f (x;m) = f−2(x;m,−2)+
f0(x;m)+ f2(x;m, 2). Examples of f function to generate 2- and3-scrolls are shown
in Chaps. 4 and 5.

6.4 Measuring the Entropy of a RNG

Entropy of a source S = {S, P}, with a set of symbols S = {s1, s2, . . . , sn} and
probability distributions P = {p1, p2, . . . , pn} is defined as [66, Chap.15]

H(S ) = −
n∑

i=1

pi log2 pi , (6.12)

where pi = p(si ), pi is the probability of success of symbol si .
If all the probabilities in (6.12) are equally probable, or the probability distribution

is uniform, then (6.12) is reduced to

H(S ) = − log2 p (6.13)

where p could be equal to any pi (all are equal).
We are going to visualize the meaning of (6.12) and (6.13) with an example.

Suppose we have a fair coin with the option “head” coded as a 0, and the option “tail”
coded as 1. As the coin is fair, both options have the probability 1/2 of success, then
its entropy will be

http://dx.doi.org/10.1007/978-3-319-34115-6_4
http://dx.doi.org/10.1007/978-3-319-34115-6_5
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H = −1

2
log2

1

2
− 1

2
log2

1

2

= −1

2

[
2 log2(2

−1)
]

= log2(2) = 1

Themeaning of H = 1 is that we have a probability of 1/2 to predict the next symbol
given the predecessors. In fact, this is the maximum probability for the two symbols.

If the coin has a trick, i.e., it has two heads, the probability of this success is 1,
then the entropy will be

H = −1 log2(1) = −1(0) = 0.

Meaning in this case we can always predict a symbol (it will be always a head).
Linking now this measurement of entropy with a random number generator

(RNG), we should expect that a good RNG produces sequences of 0/1 with an
entropy equal to 1, meaning that every 0 or 1 has a probability of 1/2 of success;
or in other words, in a good RNG should be impossible to predict the output of the
next 0 or 1 given the previous ones. For a general event, a probability of 0.99 means
that we are almost certain that such event will occur. If the probability is 0.001, we
could think that the event will not occur. If the probability is 0.5 the uncertainty
will be maximum [66, Chap.15]. Then we expect an entropy of 1 for an unpre-
dictable binary sequence. If the entropy of a RNG is less than 1, it means that the
output could be predicted, with some method that is beyond the discussion of this
chapter.

How the entropy can be measured in practice? A method is based on histograms
[67, 68]: the occurrence of small sequences of two, three, or more binary symbols
is computed. In [68] sequences of length 1 to 16 of a total of 1 million bits were
used to calculate those histograms. The histograms form the estimated probabilities
to calculate (6.12). The taken estimated entropy will converge to the true entropy as
the number of taken sequences trend to infinity.

For all the entropy measurements taken in this chapter, the context tree weighting
(CTW) algorithm was used [69]. The taken measurement by this algorithm is related
with lossless compression schemes. The entropy bounds the performance of the
strongest lossless compression, which can be realized in theory by using the typical
set or in practice using Huffman, Lempel–Ziv or arithmetic coding schemes. Then,
the performance of existing data compression algorithms is often used as a rough
estimate of the entropy of a block of data [67, 69]. The study in [70] concludes that
the CTWmethod is the most effective to measure the entropy, with the most accurate
and reliable results.
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6.5 NIST Measurements

The National Institute of Standards and Technology (NIST) of the United States of
America had created a free software for testingpseudo and randomnumber generators
[(P)RNGs]. Specifically, NIST said that the test is for (P)RNGs for cryptographic
applications, where randomness is a crucial characteristic. The package is available
at,1 and according to NIST [71, Chap.5] it will address the problem of evaluating
(P)RNGs for randomness. It will be useful in

• Identifying (P)RNGs which produce weak (or patterned) binary sequences,
• designing new (P)RNGs,
• verifying that the implementations of (P)RNGs are correct,
• studying (P)RNGs described in standards, and
• investigating the degree of randomness by currently used (P)RNGs.

All the instructions about how to compile and use the NIST package are in the
Chap.5 of Ref. [71]; in all the rest of this reference document are the full description
of each of the 16 NIST tests and how to interpret their results. For each statistical
test, a set of p-values (corresponding to the set of sequences) is produced. For a fixed
significance level, a certain percentage of p-values are expected to indicate failure.
For example, if the significance level is chosen to be 0.01 (i.e., α = 0.01), then
about 1% of the sequences are expected to fail. A sequence passes a statistical test
whenever the p-value ≥ α and fails otherwise.

6.6 Different RNGs

In general, for each chaotic system or oscillator described by three ODEs like Chua’s
and the one based on saturated function series, the following steps were applied in
this chapter, in order to generate random sequences:

1. A initial vector [x0, 0.0, 0.0]T, with the value for x0 is randomly chosen inside a
given range.

2. A first output signal is generated using the Euler method for integrating the signal,
in a step of Δt = 0.001s. Always the values of the state variable y were taken as
the output signal.

3. 200 samples are taken of this first signal and his autocorrelation function is cal-
culated. The first zero of the autocorrelated signal is taken as the sampling period
to generate the binary samples. This idea was taken from [68].

4. In some of the chaotic systems was taken only the positive signals, because of
the symmetry of the sampled signal taken in the previous step.

5. A histogram of a second sampled signal (perhaps only with the positive values)
is calculated. The threshold value for generating the binary sequences was taken
at the corresponding 0.5 value of the normalized and accumulated histogram.

1http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
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6. 30 sequences of 5000 bits are generated and the entropy for each sequence is
calculated. From these 30 results, the mean and standard deviation are calculated.

Three programs are involved in this process

1. For the generation of the first signal in the step 2.
2. A second program to generate the sampled signal in step 5.
3. A third program that generates the binary sequences in the last step.

For the simulation results in this section, all programs were coded in Python
language.

For the five realizations in this section, the logistic map was given in Sect. 6.1,
Chua’s chaotic oscillator and the one based on saturated function series were
explained in Sect. 6.3.2 and in Chap.4. Only it is necessary to know twomore realiza-
tions: the Lorenz and theRossler systems. These both are systems of three differential
equations. Lorenz system is expressed by

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz.

(6.14)

The Rossler system is defined by the following equations:

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c).

(6.15)

The parameters for all the implementations, and in order to generate a chaotic
behavior, are given in Table6.1. Visualization of the process for each implementation
can be seen in Figs. 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10.

Table 6.1 Constants values in order to generate chaos

Realization List of values

Logistic map, Eq. (6.1) a = 1.8

Chua oscillator, Eq. (6.5) α = 10, β = 15 for 2-, 3- and 4-scrolls

2-scrolls, in Fig. 6.3(a) m0 = −3.036, m1 = −0.276, b1 = 0.1

3-scrolls, in Fig. 6.4(a) m2 = −3.036, m1 = m3 = −0.276, b1 = 0.8,
b2 = 1.37

4-scrolls, in Fig. 6.5(a) m0 = m2 = −3.036, m1 = m3 = −0.276,
b1 = 0.1, b2 = 0.66, b3 = 0.86

Saturated function series, Eq. (6.7)

For 2-, 3- and 4-scrolls (in Figs. 6.6(a),
6.7(a), and 6.8(a), respectively)

a = b = c = d1 = 0.7, and m = 0.1

Lorenz system, Eq. (6.14), in Fig. 6.9(a) σ = 10, ρ = 28, β = 8/3

Rossler system, Eq. (6.15), in Fig. 6.10(a) a = 0.2, b = 0.2, c = 5.7

http://dx.doi.org/10.1007/978-3-319-34115-6_4
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Fig. 6.2 Mean ± standard
deviation of 30 sequences of
5000 binary numbers of each
realization
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Thefinalmeasurements of the entropy for each realization is shown inFig. 6.2. The
entropy for the logistic map is equal to the one obtained in [69], which confirms that
our python implementation of the CTW algorithm works properly. The calculations
for the Lorenz system were also performed with integer arithmetic with registers of
32 bits, showing a similar behavior that the implementation with real numbers (see
Fig. 6.2).

The range of values for the initial x0, the obtained sampling period, and the
threshold value to generate the binary sequences are shown in Table6.2. The value
for x0 is initialized with a random value within this given range in order to generate
every sequence used to obtain the measurements in Fig. 6.2.

Table 6.2 Values for the range of initial x0, and the obtained sampling period and threshold to
generate binary sequences for the different realizations

Realization x0 range Sampling period (s) Threshold

Logistic map [−1, 1] 1 0

Chua oscillator

2-scrolls (Fig. 6.3b–e) [−0.2, 0.2] 0.445 0.12

3-scrolls (Fig. 6.4b–e) [−0.2, 0.2] 0.445 0.288

4-scrolls (Fig. 6.5b–e) [−0.2, 0.2] 0.445 0.1177

Sat. func. series

2-scrolls (Fig. 6.6b–e) [−1.5, 1.5] 1.95 −0.025

3-scrolls (Fig. 6.7b–e) [−1.5, 1.5] 1.95 −0.025

4-scrolls (Fig. 6.8b–e) [−1.5, 1.5] 1.95 −0.025

Lorenz system (Fig. 6.9b–e) [−5, 5] 0.726 0

Rossler system (Fig. 6.10b–e) [−5, 5] 1.580 3.2
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Fig. 6.3 Graphs of the process to generate RN from a 2-scroll Chua’s oscillator. Sampling period
is taken from the signal crossing zero at graph c, and it is equal to 0.445s. Because samples are
symmetric as can be seen of graph d, only positive samples are taken. Threshold value is obtained
from graph e at 0.5, then it is equal to 0.12

One million bits were generated with the Lorenz chaotic oscillator, Chua’s 2-
scroll oscillator, 3-scrolls saturated functions series-based oscillator, logistic map,
and Rossler dynamical system. At least 100 sequences must be given to the NIST
test suite, thus 10,000 (this is the n value given to the test suite) is the length of each
sequence. Five NIST tests were eliminated for testing the generated bits because
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Fig. 6.4 Graphs of the process to generate RN from a 3-scroll Chua’s oscillator. Sampling period
is taken from the signal crossing zero at graph c, and it is equal to 0.445s. Because samples are
symmetric as can be seen of graph d, only positive samples are taken. Threshold value is obtained
from graph e at 0.5, then it is equal to 0.326

they need a bigger number of bits. The eliminated tests are rank, random excursion,
random excursion variant, universal, nonoverlapping templates, and overlapping
templates. In [72], the author used 160 sequences of 1 million bits each one in order
to perform these five tests.

According to the documentation (pp. 2–30) [71], in order to run the NIST
approximate entropy test, it is necessary to chose a value for n and m, such that
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Fig. 6.5 Graphs of the process to generate RN from a 4-scroll Chua’s oscillator. Sampling period
is taken from the signal crossing zero at graph c, and it is equal to 0.445s. Because samples are
symmetric as can be seen of graph d, only positive samples are taken. Threshold value is equal to
0.1177, this is the x value obtained from graph e at 0.5 in the accumulated histogram

m < �log2 n�−5, therefore, for the calculations performed herein: n = 10,000, and
m = 7.

For the serial test (pp. 2–28) [71], values forn andmmust satisfym < �log2 n�−2,
thus, for n = 10,000, m was selected equal to 10.
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Fig. 6.6 Graphs of the process to generate RN from a 2-scroll saturated function series-based
oscillator. Sampling period is taken from the signal crossing zero at graph c, and it is equal to
1.95 s. Samples of signal y in d. Threshold value is equal to −0.025 taken at 0.5 in the accumulated
histogram in graph e

Results for the rest of nine tests are shown in Table6.3. The cumulative, and the
serial tests generate two values each one, therefore, there are 11 values per column
in Table6.3. To pass a test the p-value must be greater than 0.01, and the proportion
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Fig. 6.7 Graphs of the process to generate RN from a 3-scroll saturated function series-based
oscillator. Sampling period is taken from the signal crossing zero at graph c, and it is equal to
1.95 s. Samples of signal y in d. Threshold value is equal to −0.025 taken at 0.5 in the accumulated
histogram in graph e

value must be greater or equal than 0.96. This value of 0.01 is the default in the NIST
test (must be between 0.01 and 0.001), and the 0.96 value is given in the output file.
Serial test fail for the bits generated from the Lorenz system because the first value
passes the test, but not the second.
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Fig. 6.8 Graphs of the process to generate RN from a 4-scroll saturated function series-based
oscillator. Sampling period is taken from the signal crossing zero at graph c, and it is equal to
1.95 s. Samples of signal y in d. Threshold value is equal to −0.025 taken at 0.5 in the accumulated
histogram in graph e

In Table6.3, it is included for comparison the NIST test applied to one million bits
generated with the Python module random: this sequence passes all the nine tests.
The binary sequence generated with Lorenz system had an entropy almost of 1.0 (see
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Fig. 6.9 Graphs of the process to generate RN from the Lorenz system. Sampling period is taken
at 0.726 in graph c. Samples of signal y in d. Threshold value is equal to 0 taken at 0.5 in the
accumulated histogram in graph e

Fig. 6.2) and passed four tests. The four rest of sequences in Table6.3, generated with
Chua’s oscillator with 2-scrolls, saturated function series (SFS)-based oscillator with
3-scrolls, logisticmap, andRossler system, only passedone test: the linear complexity
test, which could mean that all sequences are generated with chaotic realization.



6.6 Different RNGs 167

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

-10 -5  0  5  10  15

y

x

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

-250 -200 -150 -100 -50  0  50  100  150  200  250

A
ut

oc
or

re
la

tio
n 

of
 s

ig
na

l y

τ

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

-3 -2 -1  0  1  2  3

A
ut

oc
or

re
la

tio
n 

of
 s

ig
na

l y

τ

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  100  200  300  400  500  600

y 
sa

m
pl

ed
 v

al
ue

s

Sample number

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

A
cc

um
ul

at
ed

 h
is

to
gr

am
 v

al
ue

s

y

(a)

(b) (c)

(d) (e)

xy signal of Lorenz system

of signal yAutocorrelation (b) scaledGraph

of signal ySamples Graph of accumulated histogram

Fig. 6.10 Graphs of the process to generate RN from the Rossler system. Sampling period is taken
at 1.580 in graph c. Samples of signal y in d. Threshold value is equal to 3.2 taken at 0.5 in the
accumulated histogram in graph e

The interpretation of results in Table6.3 could be that, with the methodology
proposed in this chapter, it is not possible to generate a truly random binary sequence.
In [73], the authors generated truly random binary sequences from a 2-scroll chaotic
oscillator, the characteristic that authors used in order to determine a random bit is
the transition between the scrolls. In [72], the authors examine the distribution of x
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values in the stroboscopic Poincaré maps of their chaotic system, and in this it was
the one based on the sampling period.

Although, according to data inTable6.3, the generated sequences are not definitely
random, this kind of sequences were used in [74] into the genetic operators for
Evolutionary Algorithms. According to the results of authors in [74], results are
better by using sequences generated with chaos, in the same way that was explained
in this chapter. This result could lead us that randomness could not be very important,
and, this is only a hypothesis, could be better sequences that cover all the search space,
such as Halton [75] sequences do.

NIST test source code is in C language. Once it is compiled, using gcc, its exe-
cution can be performed as

./assess 10000 < input.in

where the file input.in has content shown in Fig. 6.11; 10000 is the number of
bits per sequence, and the file with the generated zeros and ones is in the location
data/ros.rnd. In this way it is possible to useassess programon the command
line, noninteractively.

As one can see in Table6.3 none of the generated sequences passed all the NIST
test.

The sequence generated with Lorenz system passes four of the nine tests. A new
sequencewas generated by applying the bit counting redundancy reduction technique
used in [76]: The original Lorenz sequence is divided in blocks of 5 bits, a new bit
for a new sequence is generated applying the XOR operation on the 5 bits of each
block. This new sequence passed all nine NIST test (see Table6.4). Then it could be
considered as a pseudorandom sequence.

Applying the bit counting redundancy reduction technique with 6 bits, to the
original sequence produced by the logistic map, increases the NIST passed tests
from 1 to 2 (see Tables6.3 and 6.4). But this new sequence cannot be considered a
pseudorandom sequence.

The von Neumann de-skewing technique [73] was also applied to the original
logistic map sequence. This de-skewing technique eliminates the correlation in the
output of the natural sources of random bits: pair of independent 01 bits are converted
to 0, and in the same way 10 bits are converted to 1, pairs 00 and 11 are discharged.
This new sequence passes one more NIST test, as can be seen in Table6.4, and this
new sequence also cannot be considered as a pseudorandom sequence.

In [73], a true random sequence was generated by detecting the jumps of the x
signal between 2-scrolls in a double-scroll chaotic oscillator. A similar technique is
used here using the Chua’s 2-scroll oscillator: A binary sequence is generated using
(6.2), but now using the signal x . Then this binary sequence is processed as

ci =
{
0 if b2i−1 = 0 and b2i = 1,

1 if b2i−1 = 1 and b2i = 0,
(6.16)



6.6 Different RNGs 169

Table 6.3 Results of apply NIST tests to some generated sequences

Python random function Lorenz Chua 2s

p-value Proportion p-value Proportion p-value Proportion

Frequency 0.319084 0.98 0.514124 0.98 0.000000 0.11

Block
frequency

0.911413 1.00 0.000000 0.80 0.000000 0.09

Cumulative
sum forward

0.162606 0.98 0.122325 0.99 0.000000 0.12

Cumulative
sum reverse

0.897763 0.98 0.108791 0.99 0.000000 0.07

Runs 0.102526 1.00 0.000000 0.00 0.000000 0.00

Longest run
of ones

0.699313 0.98 0.000000 0.49 0.000000 0.00

Spectral
DFT

0.759756 0.99 0.275709 1.00 0.000000 0.00

Approximate
entropy

0.437274 0.98 0.000000 0.01 0.000000 0.00

Linear
complexity

0.779188 0.97 0.171867 0.96 0.202268 0.94

Serial 0.678686 0.99 0.000000 0.19 0.000000 0.00

0.334538 0.99 0.075719 1.00 0.000000 0.00

Total tests
passed

9 4 1

SFS 3-scrolls Log. map Rossler

p-value Proportion p-value Proportion p-value Proportion

Frequency 0.000000 0.00 0.000000 0.00 0.000000 0.00

Block
frequency

0.000000 1.00 0.000000 0.00 0.000000 0.00

Cumulative
sum forward

0.000000 0.00 0.000000 0.00 0.000000 0.00

Cumulative
sum reverse

0.000000 0.00 0.000000 0.00 0.000000 0.00

Runs 0.000000 0.00 0.000000 0.00 0.000000 0.00

Longest run
of ones

0.000000 0.00 0.000000 0.87 0.000000 0.00

Spectral
DFT

0.000000 0.00 0.000000 0.00 0.000000 0.00

Approximate
entropy

0.000000 0.00 0.000000 0.00 0.000000 0.00

Linear
complexity

0.834308 0.97 0.437274 1.00 0.419021 0.97

Serial 0.000000 0.00 0.000000 0.00 0.000000 0.00

0.000000 0.00 0.000000 0.00 0.000000 0.00

Total tests
passed

1 1 1
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Table 6.4 Pseudorandom sequences, according to the shownNIST tests, are generated with Lorenz
system plus the 5 bit counting technique, and with the Chua’s 2-scrolls oscillator following (6.16),
plus the same bit counting technique

Lorenz + 5 bit counting Log. map + 6 bit counting Log. map + von Neumann

p-value Proportion p-value Proportion p-value Proportion

Frequency 0.911413 1.00 0.000000 0.24 0.213309 1.00

Block
frequency

0.514124 0.99 0.000000 0.91 0.000000 1.00

Cumulative
sum forward

0.249284 1.00 0.000000 0.25 0.000000 1.00

Cumulative
sum reverse

0.657933 1.00 0.000000 0.28 0.000000 1.00

Runs 0.304126 1.00 0.000000 0.67 0.000000 0.00

Longest run
of ones

0.924076 1.00 0.000000 0.93 0.000000 0.00

Spectral DFT 0.181557 0.98 0.236810 1.00 0.000000 0.06

Approximate
entropy

0.759756 0.98 0.000000 0.93 0.000000 0.00

Linear
complexity

0.964295 0.99 0.616305 0.98 0.911413 0.96

Serial 0.289667 0.99 0.000022 0.98 0.000000 0.00

0.058984 0.96 0.474986 0.99 0.000000 0.00

Total tests
passed

9 2 2

Chua 2-scrolls x

p-value Proportion

Frequency 0.779188 1.00

Block
frequency

0.739918 0.98

Cumulative
sum forward

0.719747 1.00

Cumulative
sum reverse

0.574903 0.99

Runs 0.383827 0.98

Longest run
of ones

0.275709 0.97

Spectral DFT 0.016717 0.98

Approximate
entropy

0.032923 0.98

Linear
complexity

0.066882 0.96

Serial 0.867692 0.98

0.924076 1.00

Total tests
passed

9
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Fig. 6.11 Contents of
input.in file to avoid to
use interactively program
assess

for i = 1, 2, . . . , and samples of sequence b are taken every 12 integration steps.
The sequence ci is generated when two independent samples cross the threshold of 0
in the x variable. This new sequence passes all the nine NIST tests as can be seen in
Table6.4. The generation of this sequences takes a lot of time compared with all the
other sequences. This is because in all the other sequences, a bit is generated each 1,
2, or 5 times the sampling period (2 samples are necessary to apply von Neumann
de-skewing technique, or when only the positive samples are taken, and 5 samples
are necessary if the 5 bit counting redundancy reduction technique is applied).Which
is the average time that takes a bit to be generated with (6.16), of how to increase the
throughput of this kind of pseudorandom sequences is a future work.

A final note for this chapter. The property of noninvertibility of the function that
generated the random sequences is very important. This topic is also related to one
way functions: It should be impossible to predict a new bit of the sequences knowing
all the previous bits. Appears to be that this property is fulfilled with three degree
dynamical systems if only the signal of a single variable is taken [72, 73].



Chapter 7
Secure Communication System

7.1 Chaotic Secure Communication Systems

Chaos and its applications in the field of secure communication was partially moti-
vated by the fact that power spectrums of chaotic systems resemble white noise; thus
making them an ideal choice for carrying and hiding signals over the communica-
tion channel [79]. The challenge in designing chaos-based secure communication
systems can be stated as how to send a secret message from the transmitter (drive
system) to the receiver (response system) over a public channel while achieving
security, maintaining privacy, and providing good noise rejection.

In [78], one canfind a general summary ofmajor chaos-basedmodulationmethods
being investigated and developed internationally for communication applications.
They are the following:

• Additive chaotic masking. This was the earliest form of modulation, wherein the
information is added to the carrier as a small perturbation and usually demodulated
using a cascaded form of master–slave synchronization.

• Chaotic switching. In this chaos-based version of traditional digital modulation, an
analog signal of finite duration represents a digital symbol consistingof oneormore
bits. In this case, the digital symbol is uniquely mapped to an analog waveform
segment coming from distinct strange attractors, or an analog waveform segment
from a distinct region of a single strange attractor, thereby forming a chaotic signal
constellation.

• Forcing function modulation. In this approach, a sinusoidal forcing function
in a nonautonomous chaotic system is analog or digitally modulated with the
information in a classicalmanner,with the transmitted signal being someother state
variable. This modulation typically involves the nonautonomous or inverse
synchronization methods and is the basis for the Aerospace development effort
addressing high-data-rate, chaos-based communications.

• Multiplicative chaoticmixing.This canbe considered as the chaos-basedversion of
the traditional direct-sequence spread-spectrum approach, except in this case, the
receiver actually divides by the chaotic carrier to extract the original information.

© Springer International Publishing Switzerland 2016
E. Tlelo-Cuautle et al., Engineering Applications of FPGAs,
DOI 10.1007/978-3-319-34115-6_7
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• Parametric modulation. In this case, the information directly modulates a circuit
parameter value (such as resistance, capacitance, or inductance), and some state
variable from the chaotic system is sent that contains the information in a com-
plex manner. As with forcing function modulation, this is an indirect modulation
approach that typically offers higher levels of privacy and security and can also
provide chaoticmultiplexing capabilities, wherein two ormoremessages canmod-
ulate different circuit parameters and be sent and recovered using one transmission
signal.

• Independent source modulation. This is another indirect modulation form where
the information becomes an independent voltage/current source that is inserted in
the chaotic transmitter circuit.

• Generalized modulation. This form involves the generalization of additive mask-
ing/multiplicative modulation, where the information and chaotic carrier are com-
bined in a more general invertible manner.

Those modulation methods have been enhanced and extended to different appli-
cations in engineering. From the seminal work of Pecora and Carrol, two identical
chaotic systems have been synchronized [77], and more recently, other synchro-
nization schemes have been proposed to synchronize nonidentical and of different
order chaotic systems. In this chapter, a generalized approach to synchronize chaotic
systems is applied. That approach is based on the perspective of passivity-based
state observer design in the context of generalized Hamiltonian systems including
dissipation and destabilizing vector fields [80].

One of the early methods, called additive masking, used in constructing chaos-
based secure communication systems,was based on simply adding the secretmessage
to one of the chaotic states of the transmitter provided that the strength of the former
is much weaker than that of the later [80]. This scheme is used herein to process data
related to images in gray tones.

7.2 Hamiltonian Synchronization Approach

One hot topic for chaotic oscillators is their synchronization [81–83], which has
received increased interest. This property is supposed to have interesting applica-
tions in different fields, particularly in designing secure communication systems
[80, 84–86]. For instance, private communication schemes are usually composed of
chaotic systems [80, 87–89], where the confidential information is embedded into the
transmitted chaotic signal by direct modulation, masking, or another technique. At
the receiver end, if chaotic synchronization is achieved, then it is possible to extract
the hidden information from the transmitted signal.

Multi-scrolls chaotic attractors can be synchronized by applying Hamiltonian
forms and observer approach. This technique is well described in the seminal article
[80]. We adopt it because of its suitability to automation [88, 90].
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Lets us consider the dynamical system

ẋ = f (x) (7.1)

where x ∈ R
n is the state vector and f : Rn → R

n is a nonlinear function. In [80], it
is reported that how does the system given in (7.1) can be written in the Generalized
Hamiltonian canonical form:

ẋ = J (x)
∂H

∂x
+ S(x)

∂H

∂x
+ F(x), x ∈ R

n (7.2)

where H(x) denotes a smooth energy function which is globally positive definite
in R

n . The gradient vector of H , denoted by ∂H
∂x , is assumed to exist everywhere.

Quadratic energy function is used as H(x) = 1
2 x

T Mx with M being a constant,
symmetric positive definite matrix. In this case, ∂H

∂x = Mx . The matrices J (x) and
S(x) satisfy, for all x ∈ R

n , the following properties: J (x) + J T (x) = 0 and S(x) =
ST (x). The vector field J (x) ∂H

∂x exhibits the conservative part of the system and it
is also referred to as the workless part, or workless forces of the system, and J (x)
denotes the working or nonconservative part of the system.

For certain systems, S(x) is negative definite or negative semidefinite. Thus, the
vector field is referred to as the dissipative part of the system. If, on the other hand,
S(x) is positive definite, positive semidefinite, or indefinite, it clearly represents
the global, semi-global, or local destabilizing part of the system, respectively. In
the last case, one can always (although nonuniquely) decompose such an indefinite
symmetric matrix into the sum of a symmetric negative semidefinite matrix R(x) and
a symmetric positive semidefinite matrix N (x). Finally, F(x) represents a locally
destabilizing vector field.

In the context of observer design, one can consider a special class of generalized
Hamiltonian forms with output y(t), given by

ẋ = J (y)
∂H

∂x
+ (I + S)

∂H

∂x
+ F(y), x ∈ R

n

y = C
∂H

∂x
, y ∈ R

m
(7.3)

where S is a constant symmetric matrix, not necessarily of a definite sign. I is a
constant skew symmetric matrix, and C is a constant matrix.

The estimate of the state x(t) can be denoted by ξ(t), and one can consider the
Hamiltonian energy function H(ξ) to be the particularization of H in terms of ξ(t).
Similarly, one can denote by η(t) the estimated output, computed in terms of ξ(t).
The gradient vector ∂H(ξ)

∂ξ
is, naturally, of the form Mξ with M being a constant,

symmetric positive definite matrix.
A nonlinear state observer for the generalized Hamiltonian form (7.3) is given by
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ξ̇ = J (y)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F(y) + K (y − η), ξ ∈ R

n

η = C
∂H

∂ξ
, η ∈ R

m
(7.4)

where K is the observer gain. The state estimation error, defined as e(t) = x(t) −
ξ(t), and the output estimation error, defined as ey(t) = y(t) − η(t), are governed
by

ė = J (y)
∂H

∂e
+ (I + S − KC)

∂H

∂e
, e ∈ R

n

ey = C
∂H

∂e
, ey ∈ R

m
(7.5)

where ∂H
∂e actually stands, with some abuse of notation, for the gradient vector of

the modified energy function, ∂H(e)
∂e = ∂H

∂x − ∂H
∂ξ

= M(x − ξ) = Me. We set, when
needed, I + S = W .

Definition 1 (Chaotic synchronization) [80] The slave system (nonlinear state
observer) (7.4) synchronizes with the chaotic master system in generalized Hamil-
tonian form (7.3), if

lim
t→∞ ‖x(t) − ξ(t)‖ = 0 (7.6)

no matter which initial conditions x(0) and ξ(0) have, where the state estimation
error e(t) = x(t) − ξ(t) corresponds to the synchronization error.

7.3 Synchronization of Multi-scroll Chaotic Attractors

The chaos generator model (7.1)–(7.3) in generalized Hamiltonian form is given by
⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
0 1

2b
1
2− 1

2b 0 1
− 1

2 −1 0

⎤

⎦
∂H

∂x
+

⎡

⎣
0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤

⎦
∂H

∂x
+

⎡

⎣
0
0

d1 f (x)

⎤

⎦ (7.7)

One can take as Hamiltonian energy function

H(x) = 1

2

[
ax21 + bx22 + x23

]
(7.8)
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and as gradient vector

∂H

∂x
=

⎡

⎣
a 0 0
0 b 0
0 0 1

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
ax1
bx2
x3

⎤

⎦

The destabilizing vector field calls for x1 and x2 signals to be used as the outputs,
of the master model (7.7). One can use y = x1 in (7.7). The matrices C, S, and I are
given by

C = [
1
a 0 0

]

S =
⎡

⎣
0 1

2b − 1
2

1
2b 0 0

− 1
2 0 −c

⎤

⎦

I =
⎡

⎣
0 1

2b
1
2− 1

2b 0 1

− 1
2 −1 0

⎤

⎦

The pair (C, S) is observable. Therefore, the nonlinear state observer for (7.7), to
be used as the slave model, is designed according to (7.4) as

⎡

⎣
ξ̇1
ξ̇2
ξ̇3

⎤

⎦ =
⎡

⎣
0 1

2b
1
2− 1

2b 0 1

− 1
2 −1 0

⎤

⎦
∂H

∂ξ
+

⎡

⎣
0 1

2b − 1
2

1
2b 0 0

− 1
2 0 −c

⎤

⎦
∂H

∂ξ
+ . . .

+
⎡

⎣
0
0

d1 f (ξ)

⎤

⎦ +
⎡

⎣
k1
k2
k3

⎤

⎦ ey (7.9)

with gain ki , i = 1, 2, 3 to be selected in order to guarantee asymptotic exponential
stability to zero of the state reconstruction error trajectories (i.e., synchronization
error e(t)). From (7.7) and (7.9) one have that the synchronization error dynamics is
governed by [88]

⎡

⎣
ė1
ė2
ė3

⎤

⎦ =
⎡

⎣
0 1

2b
1
2− 1

2b 0 1

− 1
2 −1 0

⎤

⎦
∂H

∂e
+

⎡

⎣
0 1

2b − 1
2

1
2b 0 0

− 1
2 0 −c

⎤

⎦
∂H

∂e
+

⎡

⎣
k1
k2
k3

⎤

⎦ ey (7.10)

As an example: By selecting K = (k1, k2, k3)T with k1 = 2, k2 = 5, k3 = 7, and
considering the initial condition X (0) = [0, 0, 0.1], ξ(0) = [1,−0.5, 3], then one
can carry out numerical simulations using a numerical method like ode45 in MAT-
LAB with a full integration of T = 2000 to generate a 4-scroll chaotic oscillator.
Figures7.1a, b and 7.2a, b show the state trajectories between the master and slave
models (7.7) and (7.9), with differentmaximumLyapunov exponents (MLE), respec-
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Fig. 7.1 4-scroll chaotic
oscillators master–slave
synchronization with
coefficients equal to 0.7.
a Master. b Slave. c Error
synchronization transient
evolution. d Error phase
diagram of the synchronized
states x and ξ
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tively. Figures7.1c, d and 7.2c, d show the synchronization error that is modeled by
(7.10), and the phase error between the master and slave chaotic oscillators, respec-
tively. As one sees, when MLE is low, the synchronization is accomplished earlier
thanwhenMLE is higher. The former case needs around 10 iterations to synchronize,
while when MLE is high more than 20 iterations are required to synchronize. This
is a trade-off in designing multi-scroll chaotic oscillators, but a high MLE ensures
better unpredictability.
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Fig. 7.2 Optimized MLE
for the 4-scroll chaotic
oscillator master–slave
synchronization. a Master.
b Slave. c Error
synchronization transient
evolution. d Error phase
diagram of the synchronized
states x and ξ −6 −4 −2 0 2 4 6
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7.4 Synchronization of 2D-4-Scroll Chaos Generators

The synchronization of PWL-based chaotic oscillators can be extended tomore direc-
tions, as the cases already detailed in [91], where the 2-direction (2D) multi-scroll
chaotic system defined by (7.11), is used to perform master–slave synchronization
by Hamiltonian forms and observer approach [80]. First, one can propose a Hamilton
energy function and its gradient vector as given in (7.12) and (7.13), respectively.
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ẋ = y − d2
b f (y; k2, h2, p2, q2)

ẏ = z
ż = −ax − by − cz + d1 f (x; k1, h1, p1, q1) + d2 f (y; k2, h2, p2, q2),

(7.11)

H(x) = 1

2

[
ax21 + bx22 + x23

]
, (7.12)

∂H

∂x
=

⎡

⎣
ax1
bx2
x3

⎤

⎦ , (7.13)

Second, one can obtain thematrices S and J as shown in (7.14) and (7.15), respec-
tively. That way, the 2D chaos generator in (7.11) can be described in generalized
Hamiltonian forms, as shown in (7.16) and (7.17), where (7.17) is the nonlinear state
observer of (7.16).

S(x) = 1

2

⎧
⎨

⎩

⎡

⎣
0 1

b 0
0 0 1

−1 −1 −c

⎤

⎦ +
⎡

⎣
0 0 −1
1
b 0 −1
0 1 −c

⎤

⎦

⎫
⎬

⎭
=

⎡

⎣
0 1

2b − 1
2

1
2b 0 0

− 1
2 0 −c

⎤

⎦ (7.14)

J (x) = 1

2

⎧
⎨

⎩

⎡

⎣
0 1

b 0
0 0 1

−1 −1 −c

⎤

⎦ −
⎡

⎣
0 0 −1
1
b 0 −1
0 1 −c

⎤

⎦

⎫
⎬

⎭
=

⎡

⎣
0 1

2b
1
2− 1

2b 0 1

− 1
2 −1 0

⎤

⎦ . (7.15)

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎢
⎣

0 1
2b

1
2

− 1
2b 0 1

− 1
2 −1 0

⎤

⎥
⎦

∂H

∂x
+

⎡

⎢
⎣

0 1
2b − 1

2
1
2b 0 0

− 1
2 0 −c

⎤

⎥
⎦

∂H

∂x
+

⎡

⎣
− d2

b f (x2)
0

d1 f (x1) + d2 f (x2)

⎤

⎦ (7.16)

⎡

⎣
ξ̇1
ξ̇2
ξ̇3

⎤

⎦ =
⎡

⎣
0 1

2b
1
2− 1

2b 0 1

− 1
2 −1 0

⎤

⎦
∂H

∂ξ
+

⎡

⎣
0 1

2b − 1
2

1
2b 0 0

− 1
2 0 −c

⎤

⎦
∂H

∂ξ
(7.17)

+
⎡

⎣
− d2

b f (x2)
0

d1 f (x1) + d2 f (x2)

⎤

⎦ +
⎡

⎣
k1 k4
k2 k5
k3 k6

⎤

⎦ (y − η).

with η being

η =
[

d1
a

d2
b 0

0 d2
b2 0

]
∂H

∂ξ
(7.18)
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By evaluating the stability of the approach using Observability’s criterion, one
obtains

det

∣
∣
∣
∣
∣
∣
∣
∣

d1
a

d2
2b2

(
1

4b2
+ 1

4b

)
d1

a
d2
b

d1
2ab

d2
4b3

0 − d1
2a

cd1
2a − d2

4b2

∣
∣
∣
∣
∣
∣
∣
∣

�= 0, (7.19)

Besides, it is also necessary to demonstrate Theorem 7.2, in order to gain insight
about the synchronization of 2D chaos generators. So that matrices S, C , and K are
used to evaluate the equation in Theorem 7.2, resulting on (7.22).

Theorem 7.1 The state x of the nonlinear system (7.20) can be globally, exponen-
tially, asymptotically estimated by the state ξ of an observer of the form (7.21), if the
pair of matrices C, S are either observable or, at least, detectable.

Theorem 7.2 The state x of the nonlinear system (7.20) can be globally, exponen-
tially, asymptotically estimated, by the state ξ of the observer (7.21) if and only if
there is a constant matrix K ; such as [W − KC] + [W − KC]T = 2[S − 1

2 (KC −
CT K T )], and is negative definite.

ẋ = J (y) ∂H
∂x + S(y) ∂H

∂x + F(y), x ∈ Rn

y = C ∂H
∂x , y ∈ Rm (7.20)

In (7.20) S is a constant and symmetric matrix, y the output vector of the system
and C a constant matrix. By selecting ξ as the estimated state vector of x , and η as
the estimated output in terms of ξ ; a dynamic nonlinear state observer for (7.20) is
given in (7.21); with K being a constant vector, known as the observer gain.

ξ̇ = J (y) ∂H
∂ξ

+ S(y) ∂H
∂ξ

+ F(y) + K (y − η),

η = C ∂H
∂ξ

.
(7.21)

2

⎡

⎣

⎡

⎣
0 1

2b − 1
2

1
2b 0 0

− 1
2 0 −c

⎤

⎦ − 1
2

⎧
⎨

⎩

⎡

⎣
k1 k4
k2 k5
k3 k6

⎤

⎦

[
d1
a

d2
b 0

0 d2
b2 0

]

+
⎡

⎣

d1
a 0
d2
b

d2
b2

0 0

⎤

⎦

[
k1 k2 k3
k4 k5 k6

]
⎫
⎬

⎭

⎤

⎦

=
⎡

⎢
⎣

− 2k1d1
a

1
b − k1d2

b − k4d2
b2 − k2d1

a −1 − k3d1
a

1
b − k1d2

b − k4d2
b2 − k2d1

a − 2k2d2
b − k5d2

b2 − k3d2
b − k6d2

b2

− 1
b − k3d1

a − k3d2
b − k6d2

b2 −2c

⎤

⎥
⎦

(7.22)
The Sylvester’s criterion is used to demonstrate that thematrix in (7.22) is negative

definite. Indeed, the values for the observer gain, matrix in (7.17) are also obtained
by calculating the roots of the determinants in (7.22). For the first determinant, one
obtains
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− 2k1d1
a

< 0 =⇒ k1 > 0 (7.23)

Equation (7.24) is obtained by solving for the minor of the matrix 2× 2 in (7.22).

det = − 1

b4a2
(−2k1d1d2b

3ak2 − 4k1d1d2b
2ak5 + b2a2 − 2b2a2k1d2 − 2ba2k4d2

(7.24)
−2b3ak2d1 + k21d

2
2b

2a2 + 2k1d
2
2ba

2k4 + k24d
2
2a

2 + 2k4d2ak2d1b
2 + k22d

2
1b

4
)

< 0

Considering that k1 = k4, k2 = k5, and k3 = k6, (7.24) can be updated by (7.25).
This assumption is valid since the nonlinear functions f (x1) and f (x2) in (7.15) are
the same.

det2 = − 1

b4a2
(−2k1d1d2b

3ak2 − 2k1d1d2b
2ak2 + b2a2 − 2b2a2k1d2 − 2ba2k1d2

(7.25)
−2b3ak2d1 + k21d

2
2b

2a2 + 2k21d
2
2ba

2 + k21d
2
2a

2 + k22d
2
1b

4
)

< 0

By solving (7.25), the interval values for k2 are obtained as shown in (7.26).
(
b + k1d2b + k1d2 − 2

√
b2k1d2 + k1d2b

)
a

d1b2
< k2 (7.26)

<

(
b + k1d2b + k1d2 + 2

√
b2k1d2 + k1d2b

)
a

d1b2
.

Note that k3 has no influence on the observable eigenvalues of the nonconservative
structure of the 2D chaos generator.

7.5 Synchronization of 3D-4-Scroll Chaos Generators

Lets us consider the 3D-multi-scroll chaotic system defined by (7.27), with f (x1),
f (x2), and f (x3) being saturated nonlinear function series approached by PWL
functions.

ẋ1 = x2 − d2
b f (x2)

ẋ2 = x3 − d3
b f (x3)

ẋ3 = −ax1 − bx2 − cx3 + d1 f (x1) + d2 f (x2) + d3 f (x3),
(7.27)
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where x1, x2, x3 are state variables, and a, b, c, d1, d2, d3 = 0.7 are positive real
constants. Using (7.20), (7.21), and (7.13), the 3D chaos generator in (7.27) can be
described in generalized Hamiltonian forms as shown in (7.28). Consequently, the
nonlinear state observer for 3D chaos generator in (7.27), according to (7.21), is
shown in (7.29).

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
0 1

2b
1
2− 1

2b 0 1

− 1
2 −1 0

⎤

⎦
∂H

∂x
+

⎡

⎣
0 1

2b − 1
2

1
2b 0 0
− 1

2 0 −c

⎤

⎦
∂H

∂x

+
⎡

⎣
− d2

b f (x2)

− d3
b f (x3)

d1 f (x1) + d2 f (x2) + d3 f (x3)

⎤

⎦ (7.28)

⎡

⎣
ξ̇1
ξ̇2
ξ̇3

⎤

⎦ =
⎡

⎣
0 1

2b
1
2− 1

2b 0 1

− 1
2 −1 0

⎤

⎦
∂H

∂ξ
+

⎡

⎣
0 1

2b − 1
2

1
2b 0 0

− 1
2 0 −c

⎤

⎦
∂H

∂ξ

+
⎡

⎣
− d2

b f (x2)

− d3
b f (x3)

d1 f (x1) + d2 f (x2) + d3 f (x3)

⎤

⎦ +
⎡

⎣
k1 k4 k7
k2 k5 k8
k3 k6 k9

⎤

⎦ (y − η). (7.29)

with η being

η =
⎡

⎣

d1
a

d2
b

d3
b

0 d2
b2 0

0 0 d3
b

⎤

⎦
∂H

∂ξ
(7.30)

According to (7.19), the approach is stable and the demonstration of Theorem 7.2
for the synchronization of three-directional chaos generators is given in (7.31), using
the matrices S, K , and C in (7.14), (7.29), and (7.30), respectively.

⎡

⎢
⎢
⎣

− 2k1d1
a

1
b − k1d2

b − k4d2
b2

− k2d1
a −1 − k3d1

a − k1d3
b − k7d3

b
1
b − k1d2

b − k4d2
b2

− k2d1
a − 2k2d2

b − 2k5d2
b2

− k2d3
b − k8d3

b − k3d2
b − k6d2

b2

− 1
b − k3d1

a − k1d3
b − k7d3

b − k2d3
b − k8d3

b − k3d2
b − k6d2

b2
−2c − 2k3d3

b − k9d3
b

⎤

⎥
⎥
⎦ (7.31)

Similarly, the values of the observer gain are calculated using theSylvester’s criterion.
Note that the first two determinants in (7.31) are identical to that on (7.22), since the
extra nonlinear function f (x3) is only related to state variable x3. In this manner, the
intervals for k1 and k2 are also given by (7.23) and (7.25), respectively. Now, consider
that k1 = k4 = k7, k2 = k5 = k8, and k3 = k6 = k9, since the nonlinear functions
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f (x1), f (x2), and f (x3) in (7.29) are the same. By evaluating (7.29), it is found the
interval of values for k3 shown in (7.33).

det3×3 = 16.58k3 − 9.71k1 + 9.78k2 + 0.18k2k3 − 3.45k22 + 6.93k23 + 16.42k1k2
(7.32)

−(2e − 9)k1k
2
3 − 28.20k3k1 + 8.25k21 + (2e − 9)k1k2k3 + 2.85 < 0

k3 = 4.14e9

−3.46e9 + k1
+ 4.59e7k2

−3.46e9 + k1
− 4.05e9k1

−3.46e9 + k1
+ 0.50k1k2

−3.46e9 + k1

+ 1

−3.46e9 + k1

(
0.50

(
4.89e19 − 6.7e19k2 − 1.66e20k1 − 1.16e20k1k2

+ 2.39e19k22 − 6.73e9k1k
2
2 + 1.41e20k214.64e9k

2
1k2 + k21k

2
2 + 1.65e10k31

)1/2) (7.33)

7.5.1 Numerical Simulation Results

By selecting k1 = k4 = 1, k2 = k5 = 2, and k3 = k6 = 0 for the observer in (7.17),
one obtains the synchronization of 2D-4-scroll chaos generators, the coincidence of
their states is represented by a straight line, with slope equal to unity, in the phase
plane for each state and its error ex , which is the difference between the observed
state x and the estimated state ξ , as shown in Figs. 7.3 and 7.4, respectively.

By selecting k1 = k4 = k7 = 1, k2 = k5 = k8 = 2, and k3 = k6 = k9 = 0 for the
observer in (7.29); one obtains Figs. 7.5 and 7.6.

A prediction of the values for the observer gain is shown in Fig. 7.7. The solution
is calculated from (7.26) and any value selected between solution (+) and solution
(−) as shown in Fig. 7.7 leads to the synchronization for 2D- and 3D-multi-scroll
chaos generators given in (7.11) and (7.27).

7.6 Image Transmission Through a Chaotic Secure
Communication System

The FPGA realization of chaos generators by applying different numerical methods
has already been introduced in [25]. Further, the application to secure communica-
tions is given in [33], where two multi-scroll chaotic oscillators generating 2 and 6
scrolls are synchronized by applying Hamiltonian forms and observer approach. The
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Fig. 7.3 a Observed and
estimated states in time
domain for two 2D-4-scroll
chaos generators. b Error
between the synchronized
2D-4-scroll chaos generators

(a)

(b)

synchronized master–slave topology is used to implement a secure communication
system by adding chaos to an image at the transmission stage and by subtracting
chaos at the recover stage. This scheme is reproduced herein and three kinds of
multi-scroll chaotic oscillators are shown before showing transmission of images in
black and white and gray tones.

7.6.1 Multi-scroll Chaos Generators Based on PWL
Functions

In Chap.4, three PWL functions were detailed to generate chaotic attractors, they
are: saturated nonlinear function series, sawtooth, and Chua’s diode. The last one
is based on PWL functions with negative slopes. They can be used in third-order
continuous-time dynamical systems to generate chaos, and numerical methods solve

http://dx.doi.org/10.1007/978-3-319-34115-6_4
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Fig. 7.4 Phase plane
diagrams for the state
variables in (7.16) and (7.17)

those mathematical models. For instance, Forward Euler and Runge–Kutta meth-
ods have been applied in [25] to solve nonlinear dynamical systems. Fourth order
Runge–Kutta requires evaluating four variables, which are described by the iterative
formulae in (7.34) and (7.35), where one can appreciate operations like addition,
subtraction, multiplication, and division, which are costly when implementing in
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Fig. 7.5 Phase plane
diagrams for the state
variables in (7.28) and (7.29)

FPGA, so that a designer should look for the best hardware realization to minimize
hardware resources.

yn+1 = yn + 1

6
h(k1 + k2 + k3 + k4) (7.34)
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Fig. 7.6 a Observed and
estimated states in time
domain for two 3D-4-scroll
chaos generators. b Error
between the synchronized
3D-4-scroll chaos generators

(a)

(b)

Fig. 7.7 Synchronization
region according to the
observer gain
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Fig. 7.8 Saturated nonlinear functions series as PWL function to generate 2-scrolls. a State variable
x . b Portrait x–y

k1 = f (xn, yn)

k2 = f (xn,
1

2
h, yn + 1

2
hk1)

k3 = f (xn,
1

2
h, yn + 1

2
hk2)

k4 = f (xn,
1

2
h, yn + 1

2
hk3)

(7.35)

Figure7.8 shows the state variable x of the chaos generator using saturated series
as PWL function. Figure7.9 shows the state variable x for the chaos generator using
Chua’s diode as PWL function. Figure7.10 shows the state variable x of the chaos
generator using sawtooth function. In all cases the phase space portrait is shown
between the state variables x–y. As one sees, all 2-scroll attractors can be used to

Fig. 7.9 Chua’s diode as PWL function to generate 2-scrolls. a State variable x . b Portrait x–y
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Fig. 7.10 Sawtooth as PWL function to generate 2-scrolls. a Seal x . b Attractor x–y

implement a secure communication system, where the security should depend on the
unpredictability of the chaos generators that is evaluated by MLE.

7.6.2 FPGA Realization

As already shown in [33, 25], the FPGA realization depends on the numerical method
that is used to solve the system of equations. In any case, the basic building blocks
are related to deal with adders, subtractors, multipliers, shift registers, multiplexers,
and so on. Again, the three basic blocks are shown in Fig. 7.11, which include pins
for clock (CLK) and reset (RST). The computer arithmetic was established to fixed
point of 28-bits in a format 4.24.

According to the discretized equations, the VHDL blocks are interconnected. One
important step is counting the number of blocks in series connection to estimate clock
cycles since all blocks are synchronous ones. In this implementation, a multiplexer
is designed to include a counter register that is waiting the number of pulses equal to
the number of blocks in series connection. That way, the correct output is the correct
one and the architecture can follow with the next iteration. The high-level diagram

Fig. 7.11 VHDL blocks
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Fig. 7.12 High-level description for the chaos generator

is shown in Fig. 7.12, where the multiplexer is used to set the initial conditions for
solving the mathematical model of the chaos generator. As one can infer, once the
initial conditions are used, the multiplexer connects the loop for performing the rest
of iterations to generate chaotic behavior.

The experimental results for generating 2-scroll attractors from the FPGA real-
izations are shown in Figs. 7.13, 7.14, and 7.15.

7.6.3 Master–Slave Synchronization

Taking as case of study the chaos generator based on saturated nonlinear function
series as PWL function, this subsection shows the synchronization by Hamiltonian
forms and observer approach. As shown above, the synchronization requires the
formulation of the system of equations for the master and slave, as shown by (7.36)
for the master oscillator, and (7.37) for the slave. Those equations are solved herein
by applying the Forward Euler method, so that they include the step size h and the
gains of the observers ki .
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Fig. 7.13 Experimental results for the chaos generator based on saturated functions. a State vari-
ables x (top) and y (down). b Portrait x–y

xmn+1 = xmn + h ∗ ymn

ymn+1 = ymn + h ∗ zmn

zmn+1 = zmn + h ∗ (−a ∗ x − b ∗ y − c ∗ z + d1 ∗ f (xmn; q))

(7.36)

xsn+1 = xsn + h ∗ (ymn + k1 ∗ (xmn − xsn))

ysn+1 = ysn + h ∗ (zmn + k2 ∗ (xmn − xsn))

zsn+1 = zsn + h ∗ (−a ∗ x − b ∗ y − c ∗ z + d1 ∗ f (xsn; q) + k3 ∗ (xmn − xsn))
(7.37)
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Fig. 7.14 Experimental results for the chaos generator based on Chua’s circuit. a State variables x
(top) and y (down). b Portrait x–y

As one sees in (7.37), the multiplication ki ∗ (xmn − xsn) is associated to gains
ki that represent the observers for synchronizing both the master and slave chaos
generators. The synchronization is controlled by evaluating the error between the
state variables for the master xm and slave xs at each iteration n, i.e., xmn − xsn .
Figure7.16 shows the error evolution for two different gains of the observers, e.g.,
ki = 3 and ki = 10.

The equations in (7.36) and (7.37) should be simulated tofind the appropriate gains
for the observers k1, k2, and k3. For instance, Fig. 7.17 shows the synchronization
errors when the observers have the same gain and equal to 3. Figure7.18 shows the
synchronization errors but now using gains equal to 10. Following this direction, one
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Fig. 7.15 Experimental results for the chaos generator based on sawtooth. a State variables x (top)
and y (down). b Portrait x–y

can conclude that the time required for synchronizing the master–slave topology is
lower as the gains of the observers being increased.

The synchronization is better if two state variables are plotted and the result is a
slope at 45◦. For example, the plot xmaster versus xslave is given in Fig. 7.19, where
one can appreciate that state variable x perform much better than the state variables
y and z.

7.6.4 FPGA Realization

The VHDL code for the master–slave synchronization is the same for multi-scroll
chaotic oscillators. Figure7.20 shows the synchronization of twomulti-scroll chaotic
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Fig. 7.16 Synchronization
error for two different gains
of the observers. a ki = 3.
b ki = 10

oscillators, where one can appreciate the master and slave blocks. As mentioned
above, amultiplexer (left side) is required to process the initial conditions, afterwards,
the loop is closed to iterate according to the numerical method used to solve the
dynamical systems of equations. The counter controls the clock cycles to ensure the
iterations and finally, the subtractors are used to provide outputs to observe the error
in the three state variables in the slave. This is pretty good described in [33].

After the synchronization is guaranteed, one is able to implement a secure com-
munication system. Recalling the classification of modulation schemes provided at
the beginning of this section, this chapter highlights the one based on masking. The
data being transmitted is contaminated with chaos and if perfect synchronization is
achieved, at the receiver end the hidden data is extracted, i.e., chaos is subtracted
from the data in the channel. To do this, several blocks are required: for example,
when processing images, a read-only memory (ROM) should be realized to allocate
the data, as shown in Fig. 7.21. The master oscillator requires an adder to mask the
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Fig. 7.17 Synchronization
errors for state variables
x, y, and z, with
k1 = k2 = k3 = 3
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Fig. 7.18 Synchronization
errors for state variables
x, y, and z, with
k1 = k2 = k3 = 10
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Fig. 7.19 Error between
state variables of the master
and slave. a xm versus xs .
b ym versus ys . c zm
versus zs



7.6 Image Transmission Through a Chaotic Secure Communication System 199

Fig. 7.20 Block description of the master–slave synchronization and providing outputs for the
errors

Fig. 7.21 Chaotic secure communication system description

data to be transmitted with chaos. At the receiver end, a subtractor is required to
recover the data without loss of information. The comparator is monitoring the syn-
chronization errors, when they are lower than a required threshold, the transmitter
blocks begin sending the data to the adder to encrypt it with chaos.
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Fig. 7.22 Image to be transmitted

Before theVHDLcode is synthesized into anFPGA, a simulation is recommended
using tools that can be freely available on Internet. For example, Active-HDL and
simulink are good tools that are used herein. The data to be transmitted is the image
shown in Fig. 7.22, which can be converted to a black and white or grayscale image.

The image is converted to a matrix of size (300, 226) whose values can be integers
of 8 bits. Then using Simulink, the block description is given in Fig. 7.23, where one

Fig. 7.23 Simulink description for simulating the secure communication system
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Fig. 7.24 Image transmitted in grayscale tones using 2-scroll chaos generators. a Image being
transmitted. b Channel. c Received image

Fig. 7.25 Image transmitted in black and white using 2-scroll chaos generators. a Image being
transmitted. b Channel. c Received image

Fig. 7.26 Image transmitted in grayscale tones using 20-scroll chaos generators. a Image being
transmitted. b Channel. c Received image
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Fig. 7.27 Image transmitted in black and white using 20-scroll chaos generators. a Image being
transmitted. b Channel. c Received image

Fig. 7.28 Signals simulated in Active-HDL for transmitting an image in grayscale tones. a Data
being transmitted. b Signal in the master oscillator. c Channel. d Signal in the slave oscillator.
e Received data
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can see six outputs that are associated to the signals in the master and slave, and three
outputs that provide information of the errors for the three state variables.

Using chaos generators with 2-scrolls, the experimental results for transmitting an
image in grayscale tones are shown in Fig. 7.24. Figure7.25 shows the same image
transmitted in black and white.

Increasing the number of scrolls improves the unpredictability of the chaotic
system. In this manner, Fig. 7.26 shows the image transmitted in grayscale tones,
and Fig. 7.27 shows the image transmitted in black and white using 20-scroll chaotic
oscillators.

As one sees, the channel has better unpredictability as the number of scrolls
increases. However, an FPGA has limited resources and the number of scrolls being
generated depend on it. The following chapter discusses some issues for the appli-
cations presented in this book, where to save hardware resources, multipliers can be
implemented as single constant multipliers (SCM).

Active-HDL is also helpful to observe the information in a secure communication
system. Figure7.28 shows the signals when transmitting an image in gray scale. After
one approves this simulation, the FPGA synthesis is the next step.



Chapter 8
Challenges in Engineering Applications

8.1 On the Length of the Digital Words

An implementation of a system in hardware–software, e.g., inside a FPGA, should
use integer arithmetic (see Sect. 1.4) and its design should follow the following steps
[92]:

1. Gather all the requirements and specifications in order to design the system effi-
ciently.

2. Implement the algorithm in floating point arithmetic. This first algorithm can be
tested on a desktop computer.

3. Estimate the range of the variables and determine the integer part.
4. Determinate the optimal fractional part by a signal to quantization noise ratio

(SQNR) analysis.
5. Implement and test the algorithm in fixed point arithmetic, and finally,
6. Implement the hardware–software design.

Integer arithmetic is faster than the floating point arithmetic, it is also less consum-
ing in hardware resources, it can be implemented with less number of logical gates,
and thus it also requires less power consumption. Implementation of algorithms in
fixed point arithmetic is not new: digital filters have been implemented in this way
in at least the past 50 years [93, Chap.9].

The power of recent computers make possible to simulate and test the design on
a desktop computer before carrying the design to a FPGA.

Herein, it will be explained how a dynamical system, like the Lorenz one, can be
implemented with fixed arithmetic.

8.1.1 Example of a Design with the Lorenz System

The Lorenz system is defined by the following three differential equations:

© Springer International Publishing Switzerland 2016
E. Tlelo-Cuautle et al., Engineering Applications of FPGAs,
DOI 10.1007/978-3-319-34115-6_8
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ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz.

(8.1)

Algorithm in floating point arithmetic to simulate the Lorenz system is almost
straight from (8.1). Only it is necessary to integrate each variable. One can use the
Euler method, which is the most simple to implement in digital hardware. It can be
seen in Algorithm 1.

Algorithm 1 Lorenz system in floating point arithmetic
Require: Values for constants σ , ρ, and β. Integration time step Δt = 0.001
Require: Initial values for x0, y0, and z0. Simulation time ts
Ensure: Values of x , y, and z
s = �ts/t�
x ← 0, y ← 0, z ← 0
for i = 1 : s do

fx ← σ(y0 − x0)
fy ← x0(ρ − z0) − y0
fz ← x0y0 − βz0
x ← x + Δt fx � Euler integration method
y ← y + Δt fy
z ← z + Δt fz
print values x , y, z
x0 ← x , y0 ← y, z0 ← z

end for

In a programming language like C, variables in Algorithm 1 must be declared as
real variables (double in C). In a language as Python all variables are in double
precision by default.

8.1.2 Variables Range Determination

To obtain the range for a fixed point integer implementation of Algorithm 1, first it
is necessary to obtain the range of the variables by performing simulation. That way,
the range is obtained by observing the graphs shown in Fig. 8.1, which was simulated
for 200s for the Lorenz system.

From the simulation graphs shown in Fig. 8.1, the following ranges for each vari-
able are obtained:

• x ∈ [−25, 25],
• y ∈ [−30, 30],
• z ∈ [0, 50].
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Fig. 8.1 Simulation of 200s for the Lorenz system. The samples are taken every 0.015s. For this
simulation σ = 10, ρ = 28, β = 8/3, x0 = 5, y0 = z0 = 0

8.1.3 Number of Bits in the Integer Part

A procedure to estimate the integer part, to represent the variables of a system with
integers, is by calculating the maximum values that such variables can get. It is done
by replacing the maximum values in their corresponding equations. This procedure
will be illustrated with the same Lorenz system and the obtained range values. Each
variable is substituted with the values that produce its maximum ones as (remember
that σ = 10, ρ = 28, β = 8/3)
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ẋ = 10(30 − (−25)),

ẏ = 30(28 − 0) − (−30),

ż = (25)(30) − (8/3)(0).

the maximum values that the variables can get are:

ẋ = 10(45) = 450

ẏ = 840 + 30 = 870

ż = 750 = 750.

For the variable ẏ it is also possible to calculate it using 50, the maximum value for z,
then 30(28 − 50)which is equal to 30(−22) = −660 and |−660 − 30| = |−690| <

|870|, therefore, 870 is chosen because it is the biggest value that ẏ can get.
The number of bits necessary to represent 870 is

�log2(870)� = �9.76� = 10.

Therefore, 10+1 bits (plus the sign bit) are need to represent for the integer part.

8.1.4 Fixed Point Implementation

One key question is how many bits are necessary to represent the fractional part?
The first solution is to use the remaining bits of a wordlength of 32 bits, then, for 10
bits for the integer part, plus the sign bit, the remaining 21 bits could be used for the
fractional part.

With numbers of type A(10, 21), it is possible to represent values in the range
−210 ≤ x < 210 − 2−21.

The algorithm implemented in Python, using themodule of deModel,1 is presented
in Algorithm 2.

Instead of deModel pythonmodule, one could use directlylong intCvariables
of 64 bits; so that it is possible to represent numbers up to A(10, 21), for example,
which needs 32 bits. In this way also the multiplication can be stored in a 64 bit
long int variable. Then, the ‘pfx.sum’ and ‘pfx.substraction’ can be substituted
with native ‘+’ and ‘−’ operations.

The ‘pfx.multRound’ function performs the multiplication of two variables
A(a, b), which results in a (2a + 1, b) number, and returns the rounded result to
a A(a, b) number. To round the result of the multiplication, it is necessary to sum a
number equal to a 1 followed by (b − 1) [92] zeros and then shifting the result to the
right b bits.

1http://www.dilloneng.com/demodel.html.

http://www.dilloneng.com/demodel.html
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Algorithm 2 Lorenz system in fixed point arithmetic
Values for constants σ , ρ, and β. Integration time Δt = 0.001
Initial values for x0, y0, and z0. Simulation time ts
Values of x , y, and z
iσ ← A(10, 21, σ )

iρ ← A(10, 21, ρ)

iβ ← A(10, 21,−β)

s = �ts/t�
ix0 ← A(10, 21, x0)
iy0 ← A(10, 21, y0)
iz0 ← A(10, 21, z0)
ix ← A(10, 21, 0.0)
iy ← A(10, 21, 0.0)
iz ← A(10, 21, 0.0)
ifx ← A(10, 21, 0.0)
ify ← A(10, 21, 0.0)
ifz ← A(10, 21, 0.0)
for i = 1 : s do

n0 ← pfx.subtract( iy0, ix0 )
ifx ← pfx.multRound( iσ , n0 )
n0 ← pfx.substract( iρ, iz0 )
n1 ← pfx.multRound( ix0, n0 )
ify ← pfx.substract( n1, iy0 )
n0 ← pfx.multRound( ix0, iy0 )
n1 ← pfx.multRound( iβ, iz0 )
ifz ← pfx.substract( n0, n1 )
n0 ← pfx.multRound( ih, ifx ) � Euler integration method
ix ← pfx.sum( ix, n0 )
n0 ← pfx.multRound( ih, ify )
iy ← pfx.sum( iy, n0 )
n0 ← pfx.multRound( ih, ifz )
iz ← pfx.sum( iz, n0 )
print values float(ix), float(iy), float(iz)
ix0 ← ix, iy0 ← iy, iz0 ← iz

end for

Simulations with numbers A(10, 21) and real numbers for the Lorenz system is
shown in Fig. 8.2.

Which is the correct number of b bits to use? In the implementation of digital fil-
ters, it is suggested to perform a signal to quantization noise ration (SQNR) analysis
[92, 93]. But in the same form as the use of the simplest integration method (Euler
method), it does not affect the behavior of the chaotic system. It could be that the val-
ues are far away of the result obtained with real numbers but still its global behavior
is correct. Figure8.3 shows this idea. The same Lorenz system in Fig. 8.2 is per-
formed now with numbers A(10, 19), A(10, 17), A(10, 15), A(10, 13), A(10, 11),
and A(10, 9). The last simulation, in Fig. 8.3f, stops in a single point (the one at the
end of line in the center), but appears to be the other simulations are correct.
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Fig. 8.2 Simulationof 200s forLorenz systemusingfixedpoint arithmeticwith numbers A(10, 21).
For the shown graphs, samples are taken every 0.015s, and σ = 10, ρ = 28, β = 8/3, x0 = 5,
y0 = z0 = 0 for (8.1)

8.2 Current Challenges

As one can infer, novel research in engineering applications require combining dif-
ferent topics with digital hardware design. Apart from the applications provided
within this book, namely: chaos generators, ANN, RNG, and secure communication
systems, new challenges arise. Some related to hardware design, others related to
programming issues and so on. This section lists few recentworks that are of common
interest to enhance the applications showed herein.
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Fig. 8.3 Simulation of Lorenz system with integer number with different size in the fractional
part. The last simulation is unstable and stops in a single point (the end of the line in the center).
The same parameter values in Fig. 8.2 are used. a Result with numbers A(10, 19). b Result with
numbers A(10, 17). c Result with numbers A(10, 15). d Result with numbers A(10, 13). e Result
with numbers A(10, 11). f Result with numbers A(10, 9)

As shown in the previous section, computer arithmetic is quite important for
reliable FPGA implementations. Recently, the authors in [94] showed interest in
sign-magnitude (SM) representation in decimal numbers that lies in the IEEE 754-
2008 standard, and where the significant in floating-point numbers is coded as SM.
The authors clearly show that software implementations do not meet performance
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constraints in some applications, so that more development is required in program-
mable logic, which is a key technology for hardware acceleration. The reader can
found two strategies for SM decimal adder/subtractors in that reference, for which
the authors propose six new FPGA-specific circuits. The first strategy is based on
ten’s complement (C10) adder/subtractors and the second one is based on parallel
computation of an unsigned adder and an unsigned subtractor. Four of these alterna-
tive circuits are useful for at least one area-time-trade-off and specific operand size.
The authors conclude that, the fastest SM adder/subtractor for operand sizes of 7 and
16 decimal digits is based on the second proposed strategy with delays of 3.43 and
4.33ns, respectively, but the fastest circuit for 34-digit operands is one of the three
specific implementations based on C10 adder/subtractors with a delay of 4.65ns.

Although not mentioned in the previous chapters, a random number generator
can be used to design noise generators. For instance, the authors in [95] introduce a
modular design of a Gaussian noise generator (GNG) based on FPGA technology.
The main contribution is the development of a new range reduction architecture in
a series of elementary function evaluation modules. One issue is the approximation
and quantization errors for the square root module, for which the authors showed
that with a first polynomial approximation it is high; so that they avoided using the
central limit theorem (CLT) to improve the noise quality. It resulted in an output rate
of one sample per clock cycle. That way, the authors subsequently applied Newton’s
method for the square root module, thus eliminating the need for the use of the
CLT because applying the CLT resulted in an output rate of two samples per clock
cycle (>200 million samples per second). Two statistical tests confirmed that the
GNG proposed by the authors, is of high quality. Furthermore, the range reduction,
which is used to solve a limited interval of the function approximation algorithms
of the System Generator platform using Xilinx FPGAs, appeared to have a higher
numerical accuracy, was operated at >350MHz, and can be suitably applied for any
function evaluation.

To minimize hardware resources, look-up tables (LUT) are quite useful is some
applications. For instance, the authors in [96] presents a scheme for designing a
memristor-based LUT in which the memristors are connected in rows and columns.
As the columns are isolated, the states of the unselected memristors in the proposed
scheme are not affected by the WRITE/READ operations; therefore, the prevalent
problems associated with nanocrossbars (such as the write half-select and the sneak
path currents) are not encountered. In that work, the authors showed extensive simu-
lation results with respect to the WRITE and READ operations. The performance of
their proposed approach is compared with previous LUT schemes using memristors
as well as SRAMs. That work showed significantly better performance in terms of
WRITE time and energy dissipation for both memory operations (i.e., WRITE and
READ). At the end, the authors concluded that the READ delay is nearly indepen-
dent of the LUT dimension, while simulation using benchmark circuits for FPGA
implementation showed that their proposed LUT offers significant improvements
also at this level.

More recently, a hot topic is the application of FPGAs in biomedical applications.
The work in [97] focuses on the architecture and FPGA implementation aspects of
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a kind of assistive tool for disabled persons with motor neuron diseases, specifically
with muscle atrophy. The tool, called a communication interface, allows such per-
sons to communicate with other people by means of moving selected muscles, e.g.,
within the face. To develop this project, the authors required the application of micro-
electromechanical system MEMS accelerometers as muscle movement sensors. In
this manner, the authors investigated four different FPGA implementation methods
of signal processing fromMEMS sensors: manual HDL coding, usage of the Matlab
HDL coder and Vivado HLS, as well as embedded microcontroller exploitation. At
the end, the authors introduced a novel communication interface that can be used
either as an input switch for, so called, virtual keyboards or as a stand-alone tool,
which allows disabled persons to write a text by means of the Morse code.

From the current research listed above, one can imagine how to enhance engi-
neering applications when using FPGAs. For which the software synthesis is a useful
technology to accelerate the design of digital systems [98].

Readers are encouraged to search related bibliography to get more insights on the
FPGA realizations for engineering applications.
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